Façonnage spatio-temporel de l'émission harmonique d'ordre élevé dans les cristaux nanostructurés
Nous proposons d’étudier la manipulation spatio-temporelle du rayonnement émis par la génération d’harmoniques d’ordre élevé, en mettant à profit les progrès des technologies de nanofabrication. L’approche consiste à transposer les méthodes développées pour les méta-optiques au régime de champs forts spécifique à la génération d’harmoniques. Le(la) candidat(e) devra explorer différentes stratégies de conception pour contrôler les propriétés spatio-temporelles de ce rayonnement, qui est intrinsèquement lié à la large bande spectrale des impulsions attosecondes. Ces concepts seront ensuite implémentés et validés expérimentalement. Ce projet a pour objectif de renforcer l’intégration de la génération d’harmoniques d’ordre élevé dans des dispositifs optoélectroniques, ouvrant ainsi la voie à de nouvelles applications en photonique ultrarapide.
Comprendre les signaux émis par les liquides en mouvement
L'élasticité est l'une des plus anciennes propriétés physiques de la matière condensée. Elle s'exprime par une constante de proportionnalité G entre la contrainte appliquée (s) et la déformation (?) : s = G.? (loi de Hooke). L'absence de résistance à la déformation de cisaillement (G' = 0) indique un comportement de type liquide (modèle de Maxwell). Longtemps considérée comme spécifique aux solides, l'élasticité de cisaillement a récemment été identifiée dans les liquides à l'échelle submillimétrique notamment mis en évidence par un groupe au Laboratoire Léon Brillouin [1].
L'identification de l'élasticité de cisaillement des liquides (G' non nul) est une promesse de découverte de nouvelles propriétés liquides. Nous avons ainsi montré qu'un liquide confiné change de température sous l'effet d'un écoulement. Pourtant, aucun modèle classique (Poiseuille, Navier-Stokes, Maxwell) ne prédit cet effet, car sans corrélation à longue portée entre les molécules (c'est-à-dire sans élasticité), l'écoulement est dissipatif, donc athermique. Pour qu'un changement de température soit induit par l'écoulement (sans source de chaleur), le liquide doit présenter une élasticité et cette élasticité doit être sollicitée mécaniquement [1,2]. La thèse de doctorat explorera la conversion de l'énergie mécanique de l'écoulement en températures hors-équilibre (Non-Fourier) [2]. Nous exploiterons notamment cette capacité de conversion pour développer une nouvelle génération de systèmes microfluidiques (brevet FR2206312).
Nous explorerons également l'impact du mouillage sur l'écoulement et, réciproquement, nous examinerons comment l'écoulement liquide modifie la dynamique solide (THz) du substrat [3]. Des méthodes performantes, disponibles uniquement dans les Très Grandes Installations de Recherche (TGIR) comme l'ILL, seront utilisées pour sonder la dynamique hors-équilibre des phonons. Enfin, nous renforcerons nos collaborations existantes avec des théoriciens.
Le sujet de thèse porte sur le mouillage, les effets thermiques macroscopiques, la dynamique des phonons et le transport liquide.
Références:
1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi: 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202.
Intégration des Nanotubes de carbone alignés dans les batteries sans anode : mécanisme et optimisation des cellules
Les batteries sans anode ou à anode libre suscitent un intérêt croissant en raison de leur excellente densité énergétique, de leur faible coût et de la facilité de mise à l’échelle de leur procédé de fabrication. L’exploration des batteries sans anode pourrait offrir une avancée majeure dans le domaine du stockage de l’énergie, en utilisant la réserve de lithium déjà présente dans la cathode NMC pour effectuer des cycles réversibles après un processus de formation initial. Cette approche permettrait de réduire l’épaisseur globale, le nombre d’étapes de traitement et le coût des matériaux, tout en offrant une excellente densité énergétique. Les nanotubes de carbone alignés verticalement (VACNTs) sur des substrats métalliques peuvent représenter un choix intéressant pour cette application en raison de leur faible épaisseur, de la reproductibilité de leur processus de synthèse et de leurs propriétés de surface uniformes, qui ont déjà démontré leur intérêt applicatif dans le domaine des supercondensateurs. Dans ce projet de doctorat, nous explorerons une nouvelle voie d’application : les batteries sans anode, où les VACNT servent de substrat de dépôt pour le lithium ou le sodium. Nous étudierons l’électrochimie des VACNTs dans les batteries lithium sans anode (avec électrolytes liquides et solides) ainsi que dans les batteries sodium sans anode avec électrolyte liquide. Le doctorant travaillera sur l’optimisation de la synthèse des VACNTs afin d’ajuster leur épaisseur et leur densité pour les adapter à leurs propriétés électrochimiques. Des études post-cyclage (Raman et MEB) seront menées afin d’analyser l’effet du cyclage et des électrolytes sur les couches de VACNTs. L’objectif du projet est d’explorer les opportunités d’application des VACNTs dans divers systèmes de stockage d’énergie, ce qui pourrait ouvrir de nouvelles perspectives d’utilisation et de valorisation.
Étude de l’interaction matière-lumière structurée : role des moments angulaires de la lumière et de la chiralité locale en régime attoseconde
Les progrès récents de l’optique ultra-rapide et la maîtrise d’interactions lumière-matière extrêmement non linéaires permettent aujourd’hui de générer des impulsions lumineuses attosecondes (1 as = 10?¹8 s) via la génération d’harmoniques d’ordre élevé (GHOE). Ce processus convertit une impulsion laser femtoseconde en un rayonnement cohérent et ultrabref dans l’extrême ultraviolet (XUV, 10–150 eV). Ces sources uniques permettent d’accéder aux dynamiques électroniques à des échelles sub-femtosecondes et de sonder des transitions spécifiques à chaque élément, auparavant accessibles uniquement sur des installations comme les synchrotrons. Le groupe Attophysique du LIDYL, pionnier dans la génération, la caractérisation et l’utilisation d’impulsions attosecondes, a récemment développé des sources pilotées par des faisceaux portant un moment angulaire de spin (MAS) ou orbital (MAO), ouvrant la voie à l’étude de dynamiques chirales et magnétiques. En combinant ces avancées, cette thèse vise à synthétiser des champs lumineux dont la chiralité varie dans le temps et l’espace, en exploitant notamment la composante longitudinale du champ électrique. Trois régimes seront étudiés : linéaire (pompe-sonde XUV/IR), fortement non linéaire (champs structurés visibles-IR dans des milieux chiraux) et faiblement non linéaire (pompe IR/sonde XUV). Ces travaux ouvriront une nouvelle classe d’expériences en physique attoseconde, combinant exploration fondamentale et applications émergentes.
L’étudiant(e) acquerra une pratique de l’optique des lasers, en particulier femtoseconde, et des techniques de spectrométrie de particules chargées. Il (elle) étudiera également les processus de physique des champs forts sur lesquels se basent la génération d'harmonique élevées. Il/elle deviendra un(e) experte de la physique attoseconde. L’acquisition de techniques d’analyse approfondie, d’interfaçage d’expérience seront encouragées même si non indispensables.
Pour plus de détails: https://iramis.cea.fr/lidyl/pisp/150720-2/
Couplages photo et thermocatalytiques d’esters pour la synthèse d’alcènes biosourcés
L'accès facilité à l'énergie et aux matières premières carbonées offert par les ressources fossiles a permis une croissance rapide de la société. Néanmoins, l'épuisement attendu des ressources fossiles et le changement climatique exigent de se tourner vers un modèle plus durable. Les matières premières biosourcées sont une source prometteuse de carbone pour remplacer les produits pétrochimiques, mais elles nécessitent un changement radical du modèle actuel. Alors que le paradigme actuel repose sur la production d'énergie et de molécules organiques à haute valeur ajoutée par des étapes d'oxydation, un modèle basé sur l'économie circulaire du carbone, c'est-à-dire la transformation du CO2 et de la biomasse qui sont déjà des matériaux fortement oxydés, requiert le développement de nouvelles méthodologies de réduction, de désoxygénation et d'utilisation directe de liaisons oxygénées pour accéder à des molécules organiques fonctionnalisées et utiles.
En chimie organique, les réactions de couplage croisé représentent l'un des principaux outils permettant de créer des liaisons C–C. Cependant, elles reposent encore aujourd’hui principalement sur l'utilisation d'halogénures organiques comme électrophiles. Dans ce projet, le doctorant aura pour objectif de démontrer que les esters d'alkyle, facilement disponibles et abondants, peuvent servir d’électrophiles dans les réactions catalytiques de couplage croisé avec les alcènes. Les esters peuvent en effet être directement biosourcés ou facilement synthétisés à partir d'acides carboxyliques et d'alcools, diminuant ainsi l'impact environnemental de la formation de la liaison carbone-carbone.
MÉCANISMES LIMITANT LA CONDUCTIVITÉ THERMIQUE DANS LES OXYDES DE TERRES RARES
Comprendre les paramètres qui déterminent l'amplitude de la conductivité thermique (k) dans les solides présente un intérêt à la fois fondamental et technologique. k est sensible à toutes les quasi-particules transportant de l'énergie, et en particulier aux phonons,vibrations collectives des atomes dans les cristaux. Cependant, les mesures de k ont également permis d'identifier des porteurs de chaleur plus exotiques, comme les spinons dans la chaîne ntiferromagnétique de Heisenberg. En termes d'applications, les propriétés thermiques des solides sont au coeur d'enjeux sociaux et environnementaux majeurs. La nécessité, par exemple, de disposer de dispositifs thermoélectriques et de barrières thermiques efficaces pour économiser l'énergie a ainsi motivé la recherche de barrières thermiques présentant une k faible. Toute une série de stratégies ont été proposées pour réduire la vitesse des phonons et/ou leur libre parcours
moyen : utilisation de liaisons interatomiques faibles, forte anharmonicité, nanoconception, structures cristallines complexes ou partiellement désordonnées, etc...Cependant, un autre concept prometteur pour réduire davantage le libre
parcours moyen des phonons est basé sur un autre mécanisme, le couplage magnéto-élastique.
Ce concept est né récemment de l'observation d'un couplage spin-phonon dans différents oxydes de terres-rares. Les excitations magnétiques impliquées dans le couplage magnéto-élastique à l'oeuvre dans ces composés ne sont pas des magnons classiques, mais des excitations de champ cristallin (CEF) à faible énergie. Comme ces dernières sont des excitations électroniques locales, elles ne se dispersent pas et ne peuvent donc pas être associées à des quasi-particules se propageant. En d'autres termes, elles ne sont pas des vecteurs de chaleur potentiels et ne contribuent donc pas à k. Cependant, elles peuvent réduire considérablement la durée de vie des phonons par l'intermédiaire d'un nouveau mécanisme de diffusion.
L'objectif de cette thèse de doctorat est donc d'étudier, tant sur le plan expérimental que théorique, le couplage magnéto-élastique et son impact sur la conductivité thermique. Les systèmes étudiés seront (sans s'y limiter) les pérovskites de Tb et comprendront des compositions à haute entropie ou à stabilisées par entropie, présentant une conductivité thermique très faible.
PROPRIÉTÉS MAGNÉTIQUES DANS LES RÉSEAUX OCTOCHLORES
Ces dernières années, les progrès réalisés dans le domaine des aimants frustrés ont conduit à l'émergence de concepts innovants,notamment de nouvelles phases de la matière. Ces dernières ne présentent aucun ordre à longue portée (aucune rupture de symétrie, mais, dans les systèmes classiques, elles correspondent à un état fondamental hautement dégénéré. Un exemple emblématique est celui de la glace de spin dans les pyrochlores : dans ce cas, la construction des configurations dégénérées repose sur une règle simple,qui stipule que la somme des quatre spins dans tout tétraèdre du réseau magnétique doit être nulle. Cette règle dite « règle de la glace » peut être comprise comme la règle de conservation d'un champ de jauge émergent. La preuve expérimentale de cette physique a été fournie par l'observation de points singuliers dans la fonction de corrélation spin-spin lors d'expériences de diffusion élastique des neutrons. Ces points singuliers, appelés points de pincement (pinch-points), apparaissent parce que les corrélations du champ émergent sont de nature dipolaire, avec des corrélations spin-spin algébriques.
L'origine de cette physique réside dans la conjonction entre la connectivité du réseau, l'anisotropie et les interactions magnétiques, qui concourent à sélectionner des configurations où une contrainte locale entre les spins est préservée. Récemment, plusieurs auteurs ont proposé une généralisation de ce concept à d'autres géométries et d'autres contraintes, comme par exemple le réseau « octochlore », formé d'octaèdres partageant leurs sommets. En fonction de la contrainte choisie, différents liquides de spin ont été prédits théoriquement.
Une réalisation expérimentale du réseau octochlore peut être trouvée dans les fluorures de terres rares KRE3F10, dont la structure cristalline forme un réseau de petits et grands octaèdres RE joints par les sommets. La physique des composés KRE3F10 est encore très mal connue, avec seulement quelques articles sur des mesures de magnétisation effectuées il y a deux décennies. L'objectif de ce travail de doctorat sera donc de caractériser l'état fondamental de deux membres 'Kramers' du système KRE3F10 (RE = Dy3+, Er3+), afin d'identifier en particulier toute signature de la physique des liquides de spin suggérée par les travaux théoriques récents, et de mieux comprendre les contraintes qui y conduisent.
Supraconducteurs triplets : du couplage spin-orbite faible au couplage spin-orbite fort
Depuis les années 1980, plusieurs supraconducteurs non conventionnels ont été découverts, certains présentant un appariement triplet (spin total S=1) pouvant donner lieu à des propriétés topologiques intéressantes. Contrairement aux supraconducteurs singulets, leur paramètre d’ordre est un vecteur dépendant des composantes du spin (S_z=-1,0,1) et est fortement influencé par la symétrie cristalline et le couplage spin-orbite (SO).
La thèse vise à étudier la transition entre faible et fort couplage spin-orbite dans un supraconducteur triplet, en s’appuyant sur un modèle multibande minimal inspiré du matériau CdRh2As3, où une phase triplet induite par champ a été récemment observée. Cette recherche permettra de calculer la susceptibilité dynamique de spin et d’identifier d’éventuelles résonances de spin collectives, analogues à celles du superfluide He3.
Le travail reposera principalement sur des outils analytiques de théorie des champs appliqués à la matière condensée. Le projet s’adresse à des candidats ayant une solide formation en mécanique quantique, physique statistique et physique du solide.
Stimulation magnéto-mécanique pour la destruction sélective de cellules cancéreuses de pancréas tout en épargnant les cellules saines.
Une nouvelle approche pour détruire les cellules cancéreuses est développée en collaboration entre le laboratoire de biologie BIOMICS et le laboratoire de magnétisme SPINTEC, tous deux au sein de l’IRIG. Cette méthode utilise des particules magnétiques dispersées parmi les cellules cancéreuses, mises en vibration à basse fréquence (1-20 Hz) par un champ magnétique rotatif. Ces vibrations induisent un stress mécanique sur les cellules, déclenchant leur mort (apoptose) de manière contrôlée.
L’effet a été démontré in vitro sur divers types de cellules cancéreuses (gliome, pancréas, rein) en culture 2D, ainsi que sur des sphéroïdes 3D (tumoroïdes) de cellules cancéreuses pancréatiques et des organoïdes de cellules saines. Les modèles 3D, plus proches des tissus biologiques réels, facilitent la transition vers des études in vivo et réduisent le recours aux modèles animaux. Les premiers résultats montrent que les cellules cancéreuses pancréatiques ont une plus grande affinité pour les particules magnétiques et sont plus sensibles au stress mécanique que les cellules saines, permettant une destruction sélective.
La prochaine étape consistera à confirmer cette spécificité dans des sphéroïdes mixtes (cellules cancéreuses et saines), à quantifier statistiquement ces résultats, et à élucider les mécanismes mécanobiologiques responsables de la mort cellulaire. Ces résultats prometteurs ouvrent la voie à une approche biomédicale innovante contre les cancers.
Études théoriques des courants orbitaux et des méchanismes de conversion afin d’optimiser les performances des dispositifs à couple spin-orbite
La thèse de doctorat proposée vise à comprendre et à identifier les paramètres clés qui régissent la conversion des moments orbitaux en courants de spin, dans le but d'améliorer l'efficacité d'écriture des dispositifs de mémoire magnétique à l’accès aléatoire à base de couple spin-orbite (SOT-MRAM). Les travaux utiliseront une approche de modélisation multi-échelle comprenant des calculs ab initio, liaisons fortes et atomistiques de l'effet Hall orbital (OHE) et de l'effet Rashba-Edelstein orbital (OREE). Ces phénomènes présentent des amplitudes et des longueurs de diffusion orbital qui peuvent être plus importantes que leurs équivalents de spin, l'effet Hall de spin (SHE) et l'effet Rashba-Edelstein (REE). De plus, ils sont présents dans une gamme plus large de matériaux, y compris les métaux légers à faible résistivité. Cela ouvre des perspectives très intéressantes pour des matériaux plus efficaces et plus conducteurs, susceptibles de lever les verrous limitant le déploiement technologique de la SOT-MRAM.
Cette thèse jouera un rôle essentiel dans une collaboration étroite entre laboratoires SPINTEC (Spintronique et Technologies de Composants) et LETI (Laboratoire d'électronique des technologies de l'information)au CEA. Le doctorant conduira les calculs ab initio à SPINTEC afin de dévoiler les caractéristiques des matériaux fondamentales pour exploiter les phénomènes orbitroniques décrits, et il construira des hamiltoniens multi-orbitaux au LETI pour calculer le transport orbital et de spin, en forte interaction/synergie avec expérimentateurs travaillant sur développement de SOT-MRAM. Le doctorat sera co-supervisé par M. Chshiev, K. Garello à Spintec et J. Li au LETI. Ce projet de doctorat sera au cœurs de collaborations avec des groupes théoriques et expérimentaux de premier au niveau national et international.
Les candidats hautement motivés ayant une solide formation en physique des solides, en théorie de la matière condensée et en simulations numériques sont encouragés à postuler. Le candidat sélectionné effectuera des calculs à l'aide du cluster de calcul de Spintec, en s'appuyant sur des progiciels basés sur les principes fondamentaux de la DFT et d'autres outils de simulation. Les résultats seront analysés de manière rigoureuse et pourront être publiés dans des revues internationales à comité de lecture.