Développement d’une nouvelle méthode d’analyse de la gamme de fabrication de tubes de gainage pour des réacteurs nucléaires de quatrième génération

L’acier austénitique AIM1 est considéré comme l’alliage de référence pour le gainage combustible des réacteurs de quatrième génération au plomb (RNR-pb) ou au sodium (RNR-Na). Cet alliage, est aujourd’hui en phase de qualification. La mise en solution des carbures de titane est un élément central pour obtenir une microstructure qui résiste bien à l’irradiation et particulièrement au phénomène de gonflement sous irradiation (condensation de lacunes qui forment des cavités dans le matériau). Elle est principalement fonction de la qualité des traitements thermomécaniques qui sont conduits lors des fabrications industrielles. De nouvelles approches de caractérisations fines (couplage Microscopie Electronique – Sonde Atomique Tomographique (SAT) – Pouvoir Thermo-Electrique (PTE)) permettent de préciser les évolutions microstructurales lors des gammes de fabrication.
Dans ce travail de thèse, nous proposons d’étudier un nouveau critère de qualité de fabrication de l’AIM1. L’objectif premier est de préciser dans quelle mesure les variations du Pouvoir Thermo Electrique (PTE) du matériau peuvent contribuer à la mise en place d’une mesure de recette qui puisse être appliquée industriellement. On cherchera à acquérir les connaissances qui permettront d’effectuer une mesure simple pour valider l’état métallurgique des tubes en ayant une connaissance précise des microstructures qui produisent l’intensité du signal PTE.
Cette étude qui associera travail expérimental et modélisation permettra d’acquérir des compétences en Microscopie Electronique en Transmission, Sonde Atomique Tomographique, comportement sous irradiation aux ions et modélisation par dynamique d’amas.

Modélisation à l’échelle atomique de la ségrégation induite par l’irradiation dans les alliages Zr(Nb)

Les gaines des crayons combustibles en alliage de zirconium constituent la première barrière de sûreté des réacteurs nucléaires à eau pressurisée. Les propriétés mécaniques ainsi que les phénomènes d’oxydation ou de croissance sous irradiation sont contrôlés par la microstructure de ces alliages. Afin de permettre une utilisation plus flexible des réacteurs nucléaires dans le mix énergétique tout en garantissant l’intégrité des gaines combustibles en conditions normales de fonctionnement et en conditions accidentelles, il est essentiel de comprendre en détail l’évolution de la microstructure sous irradiation. De nombreuses études mettent en évidence un rôle important du niobium sur cette évolution microstructurale. Par exemple, le couplage de flux de diffusion entre solutés (Nb) et défauts ponctuels créés par l’irradiation génère des ségrégations locales en Nb, ainsi que des précipités qui ne sont pas observés hors irradiation. La modélisation à l’échelle atomique apporte des informations complémentaires aux observations expérimentales qui permettent de confirmer ou d’infirmer certains scénarios d’évolution. L’objectif de cette thèse est d’appliquer aux alliages de zirconium les méthodes et outils de modélisation développés pour étudier les effets d’irradiation dans les alliages ferritiques, et tout particulièrement les phénomènes de ségrégation induite sous irradiation. Nous réaliserons des calculs de structure électronique dans l’approximation de la théorie fonctionnelle de la densité pour quantifier de façon aussi exhaustive que possible les interactions entre le niobium et les défauts ponctuels. À partir de ces données, nous calculerons les coefficients de transport du système ce qui permettra d’avoir une première discussion quantitative des couplages entre solutés et défauts ponctuels et des effets de ségrégation induite sous irradiation.

Etude expérimentale de l’évolution de la microstructure et de la microchimie, à l’échelle nanométrique, des alliages de zirconium sous irradiation

Les alliages à base de zirconium sont utilisés comme matériau de gainage du combustible nucléaire pour les réacteurs à eau pressurisée. En effet, les alliages de zirconium présentent une faible section efficace d'absorption des neutrons thermiques et possèdent de bonnes propriétés mécaniques ainsi qu’une grande résistance à la corrosion. Malgré plusieurs décennies de recherche, de nombreuses questions demeurent concernant l’évolution de la microstructure et de la microchimie des alliages de zirconium sous irradiation et leurs conséquences sur les propriétés de ces matériaux en réacteur.
L'irradiation neutronique dans les matériaux cristallins produit des cascades de déplacements qui génèrent de grandes quantités de défauts ponctuels, lacunes et interstitiels, qui s’agglomèrent pour former des amas. De plus, les éléments d’alliage se redistribuent sous irradiation sous l’influence de cette concentration élevée de défauts ponctuels. Dans les alliages Zr1%Nb on note notamment l’apparition sous irradiation d’une grande densité de nano-précipités riches en niobium. Ce phénomène surprenant semble avoir des conséquences importantes sur le comportement en fluage post-irradiation ou bien sur le comportement en corrosion en réacteur.
Ce travail de thèse, principalement expérimental, a en particulier pour objectif de mieux comprendre ce phénomène de précipitation sous irradiation des nano-précipités riches en niobium. Un alliage de zirconium Zr1%Nb sera irradié par des ions, à différentes doses d’irradiation et différentes températures, puis sera caractérisé par deux techniques expérimentales à une échelle très fine : la microscopie électronique en transmission (MET) et la sonde atomique tomographique (SAT). Ces deux techniques permettront d’accéder à la répartition des éléments chimiques dans le matériau à l’échelle atomique ainsi qu’à la caractérisation des amas de défauts ponctuels présents. Grâce à ces analyses microstructurales à l’échelle nanométrique, un scénario sera proposé pour expliquer le mécanisme de précipitation sous irradiation. Ses conséquences sur le comportement macroscopique seront également discutées. Forts de cette meilleure compréhension des mécanismes à l’échelle microscopique, les performances des alliages de zirconium en réacteur pourront être encore améliorées.

Etude expérimentale et simulation numérique des mécanismes de déformation et du comportement mécanique des alliages de zirconium après irradiation

La gaine des crayons combustibles des Réacteurs à Eau Pressurisée, fabriquée en alliages de zirconium, constitue la première barrière de confinement du combustible nucléaire. En réacteur, la gaine subit un dommage d’irradiation qui affecte ses propriétés mécaniques. Après leur séjour en réacteur, les crayons combustibles sont transportés et entreposés. Lors de ces différentes phases, le dommage d’irradiation dans la gaine est partiellement restauré conduisant à une nouvelle évolution des propriétés mécaniques du matériau. Toutes ces évolutions restent pour l’heure mal comprises.
L'objectif de ce travail de thèse est de mieux comprendre les mécanismes de déformation et le comportement mécanique après irradiation, et après restauration partielle, des alliages de zirconium. L’objectif opérationnel de cette étude est de mieux prédire le comportement des gaines après utilisation et ainsi garantir le bon confinement du combustible nucléaire et des produits de fission.
Dans ce but, des méthodes expérimentales originales seront mises en œuvre et des simulations numériques de pointe seront utilisées. Des irradiations aux ions seront réalisées afin de reproduire le dommage d’irradiation. Des traitements thermiques seront réalisés sur les échantillons après irradiation. Des échantillons seront ensuite tractionnés in situ, après recuit, dans un microscope électronique en transmission, à température ambiante ou en température. Les mécanismes observés à l’échelle nanométrique et en temps réel seront finalement simulés par dynamique des dislocations, aux mêmes échelles de temps et d’espace. Des simulations de dynamique des dislocations à très grande échelle seront également menée afin de déterminer le comportement monocristallin du matériau. En parallèle de cette étude à l’échelle nanométrique, une étude sera également menée à une échelle micrométrique. Des essais de nano-indentation et de compression de micro-piliers seront réalisés afin d’accéder au comportement mécanique après irradiation et recuit. Les résultats d’essais mécaniques seront confrontés aux simulations numériques grande échelle de dynamique des dislocations.
Cette étude permettra de mieux comprendre le comportement mécanique des alliages de zirconium après irradiation et recuit et ainsi de proposer des modèles de comportement prédictifs, basés sur les mécanismes physiques. A terme, ce travail contribuera à l’amélioration de la sureté lors du transport et de l’entreposage des assemblages combustibles usés.

Effet de la radiolyse de l’eau sur le flux d’absorption d’hydrogène par les aciers inoxydables austénitiques en réacteur nucléaire à eau pressurisée

Dans les réacteurs nucléaires à eau pressurisée, les éléments constitutifs du cœur sont exposés à la fois phénomènes de corrosion en milieu primaire, de l’eau pressurisée sous 150 bar et 300 °C environ, et à un flux neutronique. Les aciers inoxydables du cœur subissent des dommages dus à la combinaison du bombardement neutronique et de la corrosion. De plus, la radiolyse de l’eau peut impacter les mécanismes et cinétiques de corrosion, la réactivité du milieu et a priori les mécanismes et cinétique d’absorption d’hydrogène par ces matériaux. Ce dernier point, encore inexploré, peut s’avérer problématique car l’hydrogène en solution solide dans l’acier peut conduire à la modification (et la dégradation) des propriétés mécaniques de l’acier ou induire une fissuration prématurée de la pièce. Les travaux pionniers développés dans cette thèse très expérimentale seront centrés autour de l’impact des phénomènes de radiolyse sur les mécanismes et cinétiques de corrosion et surtout de prise d’hydrogène d’un acier inoxydable 316L exposé au milieu primaire sous irradiation. L’hydrogène sera tracé par le deutérium, l’irradiation neutronique simulée par irradiation électronique sur accélérateurs de particules. Une cellule de perméation existante sera reconfigurée en un dispositif unique pour permettre de mesurer in operando par spectrométrie de masse le flux de perméation de deutérium à travers un échantillon exposé au milieu primaire simulé en conditions de radiolyse. La distribution de l’hydrogène dans le matériau, ainsi que la nature des couches d’oxydes formées, seront analysées finement à l’aide des techniques de pointe disponibles au CEA et dans les laboratoires partenaires. Le(a) doctorant(e) devra in fine (i) identifier les mécanismes en jeu (corrosion et entrée d’hydrogène), (ii) en estimer les cinétiques et (iii) modéliser l’évolution du flux d’hydrogène dans l’acier fonction de l’activité de la radiolyse.

Cinétiques de ségrégation et précipitation dans les alliages ferritiques sous irradiation : couplage des effets magnétiques, chimiques et élastiques

Les aciers ferritiques sont envisagés comme matériaux de structure dans les futurs réacteurs nucléaires à fission et à fusion. Or ces alliages ont des propriétés tout à fait originales, liées aux couplages entre les interactions chimiques, magnétiques et élastiques qui affectent à la fois leurs propriétés thermodynamiques, la diffusion des espèces chimiques et celle des défauts ponctuels du cristal. Le but de la thèse sera de modéliser à l’échelle atomique l’ensemble de ces effets et de les intégrer dans des simulations Monte Carlo pour modéliser les cinétiques de ségrégation et de précipitation sous irradiation, phénomènes qui peuvent dégrader leurs propriétés d’usage. L’approche atomique est indispensable pour ces matériaux soumis à une irradiation permanente, pour lesquelles les lois de la thermodynamique d’équilibre ne s’appliquent plus.

La candidate ou le candidat recherché(e) devra avoir une bonne formation en physique statistique ou en sciences des matériaux, et être attiré(e) par les simulations numériques et la programmation informatique. La thèse se déroulera au laboratoire de métallurgie physique du CEA Saclay (SRMP) dans un environnement de recherche bénéficiant d’une expérience reconnue en modélisation multi-échelles des matériaux, avec une quinzaine de thèses et de contrats post-doctoraux en cours sur ces thématiques.

Un stage de Master 2 sur le même sujet est proposé pour au printemps 2025 et est vivement recommandé.

Impact des paramètres d’irradiation sur la formation de la phase alpha’ dans les aciers renforcés par dispersion d’oxydes (ODS)

Les aciers ferritiques-martensitiques renforcés par dispersion d'oxydes (aciers ODS) sont des matériaux d’intérêt pour la filière nucléaire. Composés majoritairement de fer et de chrome, ces matériaux peuvent être fragilisés par la précipitation sous irradiation d’une phase riche en chrome, la phase alpha prime. Cette phase, réputée sensible aux conditions d’irradiation, en fait un sujet idéal pour mieux comprendre les limites de la transférabilité ions-neutrons. En effet, si les irradiations aux ions sont fréquemment utilisées pour comprendre les phénomènes observés sous irradiation neutronique, la question de leur représentativité est régulièrement soulevée.
Dans cette thèse, nous cherchons donc à comprendre dans quelle mesure les paramètres des irradiations impactent les caractéristiques de la phase alpha’ dans les aciers ODS. Pour cela, des aciers ODS seront irradiés dans différentes conditions (flux, dose, température type de particules (ions, neutrons, électrons)) puis analysés à l’échelle nanométrique. Les caractéristiques des nano-oxydes (taille, densité) et de la phase alpha’ (taille, teneur en Cr), obtenues pour chacune des conditions d’irradiation, seront comparées à celles d’un échantillon de MA957 après irradiation aux neutrons.

Activation thermique du glissement des dislocations vis dans les métaux de symétrie cubique centrée

L'activation thermique du glissement des dislocations joue un rôle essentiel dans la déformation plastique des métaux de structures et donc dans le vieillissement de ceux-ci. Le cas des dislocations vis dans les métaux de symétrie cubique centrée constitue un archétype pour lequel il existe déjà de nombreuses données expérimentales auxquelles nous pouvons confronter les prédictions théoriques issues de la théorie statistique de Vineyard [1,2]. Cette théorie est essentielle car elle permet d'établir une transition d'échelle depuis les calculs atomistiques les plus fins [3] jusqu'aux échelles macroscopiques des tests de déformation.
Dans le cadre de cette proposition de thèse nous souhaitons tester à l'échelle atomique la théorie statistique de Vineyard en comparant les prédictions de la théorie avec des simulations de dynamique moléculaire [4]. Nos calculs préliminaires ont montré un désaccord notablement important tandis que la même comparaison pour la migration de défauts ponctuels tels que les lacunes ou les interstitiels montrait un bon accord. Si ces résultats sont confirmés il nous faudra établir une correction et mesurer l'impact de cette correction sur les prédictions théoriques associées aux essais de traction concernant les dislocations vis dans les métaux de symétrie cubique centrée. Nous accorderons une attention particulière au fer-alpha pour lequel nous disposons de nombreuses données expérimentales [5].

[1] Vineyard G.H., J. Phys. Chem. Solids 3, 121 (1957).
[2] Proville L., Rodney D., Marinica M-C., Nature Mater. 11, 845 (2012).
[3] Proville L., Ventelon L., Rodney D., Phys. Rev. B 87, 144106 (2013).
[4] Proville L., Choudhury A., Nature Mater. 23, 47 (2024).
[5] Caillard D., Acta Mater. 58, 3504 (2010).

Métrologie quasi in situ de couches fines et d’interfaces par photoémission X multi-énergies

Les dispositifs de nanoélectronique avancée et les technologies quantiques reposent sur des oxydes ultraminces et des interfaces spécifiques dont la composition chimique, la stœchiométrie et l’épaisseur doivent être maîtrisées avec une grande précision. Dans ce contexte, le LETI a fait l'acquisition du premier équipement de photoémission X (XPS–HAXPES)dédiés à la mesure en ligne de plaquettes 300 mm. Les caractéristiques uniques de cet équipement (analyse multi-énergie et résolu angulairement) ouvrent la voie à une métrologie chimique quasi in situ au plus proche des étapes procédés.

Cette thèse vise à développer des méthodologies XPS/HAXPES quantitatives, multi-énergie et en résolues en angle, appliquées à l’étude d’oxydes et d’oxynitrures ultraminces. Les travaux porteront sur la validation de la précision métrologique, la quantification des paramètres structuraux et chimiques, ainsi que sur l’élaboration de protocoles robustes permettant le transfert quasi in situ de couches sensibles entre équipements précédés (dépôt, gravure, …) et de caractérisation.

Les méthodologies développées seront appliquées à des cas d’intérêt industriel et scientifique majeur, notamment les empilements CMOS avancés et les jonctions Josephson pour dispositifs quantiques, où des barrières AlOx d’épaisseur inférieure à 2 nm jouent un rôle déterminant dans les performances des composants.

Ce projet de doctorat contribue directement au développement des technologies quantiques de nouvelle génération, de la photonique avancée et de la microélectronique à faible consommation énergétique, en améliorant la fiabilité, la stabilité et la maîtrise des matériaux à l’échelle nanométrique. La thèse sera réalisée dans un environnement scientifique de haut niveau, au sein d’un cadre collaboratif multi-partenaires.

Alliages de lithium pour batteries tout solide à électrolyte sulfure

L’utilisation du lithium métal comme électrode négative permettrait d’augmenter fortement la densité d’énergie des batteries actuelles. Cependant, aujourd’hui, ce matériau conduit rapidement à des courts-circuits au cours des cycles de charge/décharge, notamment à cause la formation de dendrites et de l’instabilité de l’interface avec l’électrolyte. Les batteries tout-solide, en particulier avec des électrolytes sulfures, constituent une alternative prometteuse, mais les limitations du lithium métal persistent. Les alliages de lithium apparaissent alors comme une solution pour améliorer les propriétés mécaniques et interfaciales tout en conservant de bonnes densités énergétiques.
L’objectif de la thèse est de développer et sélectionner des alliages de lithium adaptés aux électrolytes sulfures pour des batteries de génération 4, puis de les intégrer dans des cellules tout-solide afin d’étudier les mécanismes de dégradation. Le travail couvre à la fois la synthèse des alliages, leur mise en forme compatible avec l’industrie et leur intégration en cellules. Les alliages seront synthétisés sous forme de films fins, caractérisés finement, puis testés électrochimiquement en cellules laboratoire et en cellules-poche. Enfin, les phénomènes de dégradation, notamment aux interfaces, seront étudiés grâce à des caractérisations avancées post-mortem.

Top