Mise en oeuvre d'une électronique d’acquisition et de traitement continu programmable à des températures cryogéniques

Le sujet de thèse que nous proposons a pour objet de démontrer qu’il est possible d’intégrer à des températures
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.

Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.

Développement d’un système miniaturisé et automatisé pour l’analyse isotopique d’échantillons nucléaires

La miniaturisation, qui consiste à réduire les dimensions d’un objet, d’une méthode ou d’une fonction tout en conservant ou en améliorant ses performances par rapport à une échelle classique, a un intérêt spécifique dans le domaine de la chimie analytique pour le nucléaire. En effet, une part importante des analyses sont effectuées dans des boîtes à gants où la miniaturisation et l’automatisation sont une réponse directe au besoin de diminution des doses et des volumes d’effluents. La thèse proposée consiste ainsi à développer un système miniaturisé et automatisé, en boîte à gants, pour réaliser des analyses isotopiques de haute précision. Ce système sera basé sur l’utilisation de l’électrophorèse capillaire (CE) en couplage avec un ICP-MS à multicollection (MC-ICP-MS) nucléarisé. Durant la thèse, l’étudiant(e) utilisera des machines de micro-usinage et d’impression 3D pour développer un système aisément manipulable qui sera ensuite couplé à des MC-ICP-MS de dernière génération du laboratoire. Le travail consistera à concevoir le montage automatisé et à l’intégrer en boîte à gants, puis à poursuivre le développement de la méthode de séparation par CE pour la réalisation d’analyses isotopiques et élémentaires sur des échantillons nucléaires. Cette thèse sera réalisée dans un laboratoire reconnu internationalement pour ses compétences en analyses isotopiques de haute précision. Un cursus en chimie analytique est requis et un stage Master 2 est proposé en amont.

Mobilité des dislocations dans les alliages à haute entropie cubiques centrés

Les alliages à haute entropie sont des solutions solides monophasées multi-composants, tous présents en forte concentration. Cette classe de matériaux présente des améliorations significatives en termes de propriétés mécaniques par rapport aux alliages "classiques", et en particulier leur résistance élevée à haute température. Il est communément admis que les bonnes performances mécaniques proviennent des interactions des dislocations avec les éléments d'alliage, et qu’à haute température les impuretés ou dopants de nature interstitielle, comme l’oxygène, le carbone ou l’azote, jouent un rôle prépondérant. L’étude de la plasticité des alliages concentrés de structure cristalline cubique centrée dans le domaine des hautes températures constitue donc l’objectif de cette thèse. Les enjeux technologiques associés sont importants, ces alliages étant des matériaux de structure prometteurs, notamment pour les applications nucléaires où des températures de fonctionnement au-delà de l’ambiante sont visées.
Cette thèse s’attachera à comprendre et modéliser les mécanismes physiques contrôlant la tenue mécanique de ces alliages à haute température, en considérant différents alliages concentrés de complexité croissante, et en s’appuyant sur des outils de simulations atomiques, en particulier des codes de structure électronique ab initio. Nous nous focaliserons d’abord sur l’alliage binaire MoNb avant d’étendre aux alliages ternaires MoNbTi et MoNbTa, et d’étudier l’impact des impuretés d’oxygène sur le comportement plastique de ces alliages. Nous modéliserons les coeurs de dislocation et analyserons leur interaction avec les éléments substitutionnels et interstitiels afin de déterminer les barrières d’énergie contrôlant leur mobilité. Sur la base de ces résultats ab initio, nous développerons des modèles de durcissement permettant notamment de prédire la limite élastique en fonction de la température et de la composition de l’alliage.
Ce travail s’effectuera dans le cadre du projet DisMecHTRA financé par l’Agence Nationale de la Recherche, ce qui permettra en particulier de confronter nos modèles de durcissement aux données issues des expériences prévues dans le projet (essais mécaniques et microscopie électronique à transmission) et qui seront réalisées par les autres partenaires (CNRS Toulouse et Thiais). La thèse, hébergée au CEA Saclay, sera co-encadrée par une équipe du CEA Saclay et de MatéIS (CNRS, Lyon).

Analyse en ligne de simulants d'actinides en solution par LIBS et IA pour les procédés de retraitement du combustible

La construction de nouveaux réacteurs nucléaires dans les années à venir implique une augmentation des capacités de retraitement du combustible. Cette évolution requiert des développements scientifiques et technologiques pour mettre à jour notamment les équipements de surveillance du procédé. L’un des paramètres à suivre en continu est la teneur en actinides en solution, donnée essentielle au pilotage du procédé, actuellement mesurée par des technologies obsolètes. On se propose donc de développer la LIBS (laser-induced breakdown spectroscopy) pour cette application, une technique bien adaptée à l’analyse élémentaire quantitative en ligne. Les spectres des actinides étant particulièrement complexes, on souhaite recourir à des approches multivariées de traitement des données, comme certaines techniques d’intelligence artificielle (IA), pour extraire l’information quantitative des données LIBS et caractériser l’incertitude de mesure.
L’objectif de la thèse est donc d’évaluer les performances de l’analyse en ligne d’actinides en solution par LIBS et IA. On visera en particulier à améliorer la caractérisation des incertitudes à travers des méthodes de machine learning, et à les minimiser fortement pour répondre aux besoins de surveillance de l’usine de retraitement du futur.
Le travail expérimental sera réalisé sur des simulants non radioactifs des actinides, et au moyen d’un équipement LIBS commercial. Les données spectroscopiques alimenteront le volet de la thèse sur le traitement des données, et sur la détermination de l’incertitude obtenue par différents modèles de quantification.
Les résultats obtenus permettront de publier au moins 2 à 3 articles dans des revues à comité de lecture, voire de déposer des brevets. Les perspectives de la thèse sont la montée en maturité de la méthode et de l’instrumentation, pour aller progressivement vers une mise en œuvre sur une installation représentative d’un procédé de retraitement.

Cinétiques de ségrégation et précipitation dans les alliages ferritiques sous irradiation : couplage des effets magnétiques, chimiques et élastiques

Les aciers ferritiques sont envisagés comme matériaux de structure dans les futurs réacteurs nucléaires à fission et à fusion. Or ces alliages ont des propriétés tout à fait originales, liées aux couplages entre les interactions chimiques, magnétiques et élastiques qui affectent à la fois leurs propriétés thermodynamiques, la diffusion des espèces chimiques et celle des défauts ponctuels du cristal. Le but de la thèse sera de modéliser à l’échelle atomique l’ensemble de ces effets et de les intégrer dans des simulations Monte Carlo pour modéliser les cinétiques de ségrégation et de précipitation sous irradiation, phénomènes qui peuvent dégrader leurs propriétés d’usage. L’approche atomique est indispensable pour ces matériaux soumis à une irradiation permanente, pour lesquelles les lois de la thermodynamique d’équilibre ne s’appliquent plus.

La candidate ou le candidat recherché(e) devra avoir une bonne formation en physique statistique ou en sciences des matériaux, et être attiré(e) par les simulations numériques et la programmation informatique. La thèse se déroulera au laboratoire de métallurgie physique du CEA Saclay (SRMP) dans un environnement de recherche bénéficiant d’une expérience reconnue en modélisation multi-échelles des matériaux, avec une quinzaine de thèses et de contrats post-doctoraux en cours sur ces thématiques.

Un stage de Master 2 sur le même sujet est proposé pour au printemps 2025 et est vivement recommandé.

Etude de la catalyse de l’acide nitrique sur les aciers inoxydables

Le vieillissement des matériaux (principalement des aciers inoxydables) de l’usine de retraitement des combustibles nucléaires usés fait l’objet d’une importante activité de R & D au CEA. Le contrôle de ce vieillissement sera réalisé par une meilleure compréhension des mécanismes de corrosion des aciers inoxydables en acide nitrique (l'agent oxydant utilisé dans les étapes de retraitement).
L'objectif de la thèse est de développer un modèle de corrosion d’un acier inoxydable en fonction de la température et de la concentration en HNO3 via la quantification des produits de corrosion. Cette thèse représente un réel challenge technologique car actuellement peu d’études existent sur des mesures électrochimiques in situ dans l’acide nitrique chaud et concentré. Le doctorant réalisera également un travail expérimental important en couplant des mesures électrochimiques, des analyses chimiques (spectrométrie UV-visible-IR ...) et des analyses de surfaces (SEM, XPS,…). Sur la base de ces résultats expérimentaux, un modèle sera développé, qui sera incorporé à l'avenir dans un modèle plus global du vieillissement des équipements industriels de l'usine.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée qui a l'habitude de recevoir des étudiants.

Effet de la microstructure et de l’irradiation sur la sensibilité à la fissuration intergranulaire de l’alliage 718 en milieu REP.

L’alliage 718, alliage à base nickel, est utilisé dans les assemblages combustibles des réacteurs à eau pressurisée (REP). Ces composants sont soumis en service à des sollicitations mécaniques élevées, à l’irradiation neutronique et à une exposition au milieu primaire. Classiquement, cet alliage montre une très bonne résistance à la fissuration intergranulaire. Toutefois, il existe des conditions de microstructure et/ ou d’irradiations qui, en modifiant les propriétés mécaniques et les mécanismes de plasticité, rendent le matériau sensible à la fissuration intergranulaire en milieu primaire REP.

Dans ce cadre, l’objectif de cette thèse sera d’étudier l’influence de la microstructure (via différents traitements thermiques) et de l’irradiation sur la localisation de la déformation et sur la sensibilité à la fissuration intergranulaire en milieu primaire REP.

Dans cet objectif, deux nuances, l’une réputée sensible et l’autre non, seront testées. Des essais de traction in-situ MEB sur des échantillons dont la microstructure aura été préalablement caractérisée par EBSD seront réalisés afin d’identifier les types de localisation de la déformation intra et intergranulaire et leur évolution. L’état non irradié sera caractérisé et sera l’état de référence. Par ailleurs, des essais d’exposition et de fissuration intergranulaire en milieu primaire (coupons, traction lente, etc…) seront réalisés sur les deux nuances et à différents niveaux d’irradiation. La microstructure ainsi que l’oxydation de surface et intergranulaire des éprouvettes seront caractérisées par différentes techniques de microscopie (MEB, EBSD, FIB et microscopie électronique en transmission).

Cette thèse constitue pour le candidat l’occasion de traiter une problématique de durabilité de matériaux métalliques dans leur environnement suivant une démarche scientifique pluridisciplinaire alliant métallurgie, mécanique et physico-chimie et reposant sur la mise en œuvre de techniques de pointe variées disponibles au CEA. Les compétences qu’il sera ainsi amené à acquérir pourront donc être valorisées lors de la suite de sa carrière dans le monde industriel (y compris hors nucléaire) ou académique.

Nanostructures Organiques 2D Covalentes par Réticulation Optiquement Contrôlée d’auto-assemblages moléculaires

L’auto-assemblage de molécules sur substrat cristallin permet d’aboutir à des structures 2D non-covalentes présentant des propriétés intéressantes pour différents domaines tels que l’optoélectronique ou les capteurs. La stabilisation de ces réseaux 2D en réseaux covalents est alors un enjeu de taille et un sujet d’actualité. Différentes démonstrations font état de réticulation déclenchée par des processus thermiques. A contrario, la photoréticulation est peu décrite et pour les quelques exemples trouvés, elle est employée dans des conditions d’ultra-vide.

Sur la base du savoir-faire précédemment développé et de l’expertise complémentaire de collaborateurs chimistes, nous nous proposons de mettre en oeuvre une photoréticulation de réseaux 2D à pression atmosphérique. Pour cela, un système modèle d’oligophényles fonctionnalisés pour permettre une photoréticulation et l’obtention d’un réseau 2D covalent sera utilisé. Les réseaux obtenus seront caractérisés en corrélant spectroscopie optique et microscopie à sonde locale pour suivre et mettre en évidence les processus de réticulation photo-induite à l’échelle de la longueur d’onde.

Modélisation et Validation expérimentale d’un réacteur catalytique et optimisation du procédé pour la production de e-Biocarburants

Les procédés « Biomass-to-liquid » visant une gazéification de biomasse en syngaz (mélange mélange CO+CO2+H2) puis une transformation de ce syngaz par une synthèse Fischer-Tropsch visant la production de différents carburants (kérosène, diesel, gasoil marin) connaissent un essor ces 20 dernières années. Plusieurs démonstrateurs ont été développés, notamment en Europe. Cependant, le trop faible ratio H/C du syngaz résultant de la gazéification nécessite une recirculation voire le rejet du CO2 en sortie du procédé ce qui complexifie les séparations et a un impact négatif sur la valorisation du carbone biosourcé.
Récemment, la possibilité d’effectuer, au sein d’un même réacteur catalytique, la réaction de Reverse Water Gas Shift (RWGS) et la réaction de Fischer-Tropsch (FT) à l’aide de catalyseurs à base de fer et de différents promoteurs a été démontrée (Riedel, 1999) et reproduite dans le cadre de plusieurs thèses CEA/CP2M (Panzone, 2019 ). Elle ouvre de nouveaux potentiels pour valoriser au mieux l’ensemble du contenu carboné de la biomasse à condition de compléter le syngaz par un apport d’hydrogène issu d’électricité renouvelable.
L’objectif de la thèse se concentre sur l’hydrogénation directe d’un mélange CO/CO2 en hydrocarbures qui consiste à enchainer au sein du même réacteur les reactions de RWGS et la synthèse Fischer-Tropsch . Il s’agit de modéliser cette synthèse catalytique dans un réacteur à lit fixe dans des conditions représentatives d’un procédé industriel de PBtL afin d’en optimizer le fonctionnement.

Développement de supports solides poreux siliceux pour la sorption d’actinides – Comportement sous irradiation

L’objectif de ce projet de recherche est d’étudier la densification d’une structure mésoporeuse sous l’effet des dommages d’irradiation produit par la présence d’un actinide (238Pu) dans la structure poreuse. Pour cela, des matériaux siliceux à base de silices mésoporeuses modifiées par l’ajout d’éléments d’addition (B, Al…) seront mis en œuvre. L’ajout de ces éléments aura pour but de fragiliser la structure mésoporeuse afin de favoriser sa densification. Les caractéristiques de la structure mésoporeuse (diamètre des pores, taille des murs, symétrie du réseau poreux) seront d’autres paramètres de l’étude. Ces matériaux seront fonctionnalisés par des ligands de type phosphonate pour l’adsorption d’actinides : le thorium comme simulant dans une étape préliminaire, puis le plutonium. La dernière partie de ce travail qui se poursuivra au-delà de la thèse, consistera à étudier par différentes techniques (SAXS, BET, microscopie…) l’évolution de la structure mésoporeuse sous l’effet des dommages d’irradiation au cours du vieillissement du matériau. Ce travail de recherche fondamental pourrait avoir des retombées dans le domaine de matériaux de conditionnement des déchets nucléaires : vieillissement des gels à la surface des verres nucléaires, matériau support pour la décontamination des effluents radioactifs. Une partie du travail sera réalisée dans l’installation Atalante du CEA Marcoule.

Top