Nucléation, Croissance et Propriétés Structurales Multi-Echelle de Nanoparticules Colloïdales d’Oxydes d’Actinides (Pu, U, Th)

Les oxydes nanocristallins possèdent des propriétés physico-chimiques uniques, modulées par leur taille et leur structure locale, les rendant prometteurs pour diverses applications technologiques. Cependant, les nanoparticules d’oxydes d’actinides restent encore peu étudiées, en raison de leur radioactivité et toxicité. Néanmoins, les études qui leur sont consacrées sont grandissantes, motivées par des raisons environnementales ou industrielles, notamment pour leur implication dans les cycles du combustible nucléaire actuels et futurs. Cette thèse cible le plutonium, un élément clé des réacteurs nucléaires. Son comportement en solution est complexe, notamment en raison des réactions d’hydrolyse qui conduisent à la formation de nanoparticules colloïdales de PuO2 extrêmement stables. Bien que ces espèces soient aujourd’hui mieux décrites, les mécanismes conduisant à leur formation restent encore peu explorés.

L'objectif ambitieux de cette thèse est de percer les mécanismes fondamentaux en lien avec la formation de ces nanoparticules en adoptant une approche systématique combinant une large gamme de paramètres expérimentaux. Ceux-ci incluent le milieu de synthèse, la température, la concentration des réactifs, la durée de réaction ou encore l'apport de la sonochimie. L’accent sera mis sur l’étude des étapes de nucléation et de croissance de ces nanoparticules, ainsi que sur leurs propriétés structurales en fonction des conditions physico-chimiques qui influencent leur formation. Des études seront conjointement réalisées à l’ICSM avec les éléments Th, U et Zr en tant qu’analogues et sur l’installation Atalante pour le Pu. Au-delà des techniques usuelles de laboratoire nécessaires à la caractérisation de ces systèmes, des expériences complémentaires seront réalisées sur des lignes synchrotron (SOLEIL et ESRF) afin de caractériser de manière approfondie les propriétés structurales et réactionnelles de ces espèces et de leur précurseur.

Prédire la solubilité grâce à l’IA pour innover en hydrométallurgie

L’un des challenges de l’hydrométallurgie est de parvenir à trouver une molécule extractante à la fois sélective et efficace. Pour ce faire, il faut choisir parmi des milliers de possibilités, action impossible à réaliser par une méthode synthèse-test. A la place, de nombreuses études se basent sur des calculs quantiques pour évaluer l’efficacité d’un ligand à partir de la stabilité du complexe. Cependant, ces méthodes ne permettent pas de prendre en compte certains paramètres physico-chimiques essentiels à une extraction efficace tels que la solubilité.
Ce projet a donc pour objectif de développer un outil informatique basé sur l’IA capable de prédire la solubilité d’une molécule dans un solvant donné à partir de sa structure moléculaire. Dans un premier temps, l’étude se focalisera sur 3 solvants : l’eau, pour laquelle des outils pré-existants serviront de référence, l’acide nitrique 3 M pour être dans des conditions usuelles de l’industrie nucléaire, et l’octanol, solvant organique utilisé pour déterminer le coefficient de partage logP. Le projet se découpe en 4 jalons principaux :
1)Etude bibliographique d’outils similaires existants permettant de choisir les voies les plus prometteuses
2)Recherche de bases de données et complétion si nécessaire par des expériences de solubilité en laboratoire
3)Modification/création du code et entraînement du réseau de neurones sur les bases de données ainsi établies
4)Vérifications des prédictions sur des molécules non-incluses dans les bases de données par comparaison avec des mesures en laboratoire

Comportement de nanocavités sous chargement mécanique : de la compréhension des mécanismes physiques à l’homogénéisation de matériaux nanoporeux

Des nanocavités - typiquement de quelques nm à quelques dizaines de nm - sont souvent observées dans les métaux, par exemple dans les applications hautes températures suite à la condensation de lacunes ou dans les alliages métalliques utilisés dans les réacteurs nucléaires du fait de l’irradiation. La présence de ces nanocavités dégrade le comportement mécanique des matériaux et contribue à la rupture. Il est donc nécessaire de déterminer les mécanismes physiques associés au comportement de ces nanocavités sous chargement mécanique et d’obtenir des modèles homogénéisés décrivant le comportement macroscopique des matériaux nanoporeux. Les résultats disponibles dans la littérature restent à ce jour limités, notamment en ce qui concerne la représentativité des simulations réalisées et des modèles proposés vis-à-vis des applications d’intérêt. Cela inclut par exemple la prise en compte des défauts cristallins entourant les cavités, l’effet des chargements cycliques et la localisation des nanocavités au niveau des joints de grains. Les objectifs de cette thèse sont donc de déterminer le comportement de nanocavités sous chargement mécanique et les mécanismes physiques associés en considérant des situations réalistes vis-à-vis des applications, de développer des modèles analytiques à bases physiques permettant de décrire le comportement de nanocavités sous chargement mécanique, et enfin de proposer des modèles homogénéisés adaptés aux nanocavités et utilisables pour simuler la rupture par croissance et coalescence de cavités. Les cas d’applications visés sont ceux liés aux alliages métalliques sous irradiation mais les éléments de compréhension obtenus et les modèles développés pourront être utilisés dans un contexte plus large. Afin d’atteindre ces objectifs, des simulations de Dynamique Moléculaire (DM) seront réalisées, analysées à partir de la théorie élastique des dislocations et utilisées pour proposer des modèles homogénéisés pertinents pour les matériaux nanoporeux.

Vers une compréhension du comportement expansif de certains enrobés cimentaires de concentrats d’évaporation : approche expérimentale et modélisation couplée chimie-transport-mécanique simplifiée

Dans l’industrie nucléaire, l’évaporation est un procédé communément utilisé pour réduire le volume des effluents radioactifs de faible ou moyenne activité avant leur conditionnement. Il en résulte des concentrats d’évaporation, solutions de forte salinité pouvant contenir un large éventail d’espèces ioniques. Ces concentrats sont ensuite conditionnés en matrice cimentaire, matériau présentant de nombreuses qualités intrinsèques (faible coût, disponibilité, simplicité de mise en œuvre, bonne résistance mécanique, stabilité sous irradiation…). L’acceptation en stockage des colis de déchets cimentés passe néanmoins par le respect d’un certain nombre de spécifications. Il est ainsi nécessaire de vérifier l’absence d’expansion conduisant à une dégradation de la matrice lors d’une conservation en environnement humide.
La thèse visera à comprendre les mécanismes qui régissent les variations volumiques d’enrobés de concentrats d’évaporation lorsqu’ils sont conservés sous eau. L’étude sera menée sur déchets simulés, reconstitués par dissolution dans l’eau de sels aux concentrations désirées. Elle débutera par une phase expérimentale qui fournira les données d’entrée pour une modélisation physico-chimique simplifiée des enrobés afin d’en estimer le comportement mécanique macroscopique, ainsi que les principaux flux lixiviés.
Ce projet de recherche s'adresse à un doctorant désireux de renforcer ses compétences en science des matériaux tout en contribuant à des solutions innovantes pour le conditionnement des déchets radioactifs. Il sera mené en partenariat avec l’ONDRAF, l’Organisme National belge pour la gestion des Déchets Radioactifs, et s’appuiera sur les compétences de deux laboratoires du CEA, le Laboratoire de Formulation et de Caractérisation des Matériaux Minéraux (CEA Marcoule) ainsi que le Laboratoire d’Etude du Comportement des Bétons et Argiles (CEA Saclay).

Modélisation multi-échelles de la diffusion de l’hydrogène dans un polycristal de nickel

Dans de nombreuses applications, des matériaux de structure métalliques sont en contact avec de l’hydrogène qui va pénétrer dans le métal, dégrader ses propriétés mécaniques, et parfois conduire à la rupture du matériau. Les mécanismes de fragilisation par l’hydrogène ont été très étudiés par le passé. Néanmoins, il n’existe toujours pas de modèle prédictif quantitatif de ces phénomènes. Cette thèse s’intéresse à la ségrégation de l’hydrogène aux joints de grains qui est un des mécanismes de fragilisation observé. L’objectif est de modéliser la cinétique de ségrégation en partant de l’échelle atomique, ce qui implique donc de trouver les structures d’équilibre des joints de grains, d’identifier les sites de ségrégation pour chaque joint de grain, et de quantifier l’effet d’un joint de grain sur le coefficient de diffusion de l’hydrogène. Ces données alimenteront ensuite un modèle en élément finis qui permettra de calculer la répartition de l’hydrogène au cours du temps, en prenant en compte la microstructure polycristalline de l’échantillon et les propriétés spécifiques à chaque joint de grain. Ces résultats seront comparés à des expériences de perméation d’hydrogène qui donnent accès à un coefficient de diffusion moyen, ainsi qu’à des mesures localisées sur un joint de grain particulier (méthodes PANI et SKPFM)

Etude à l’échelle atomique de la mobilité des dislocations dans le combustible MOX

La transition vers la neutralité carbone exige une augmentation rapide des énergies décarbonées, dont le nucléaire, qui nécessite une compréhension approfondie des matériaux irradiés. Le combustible à oxyde mixte (MOX) est particulièrement important, car il optimise l'utilisation des ressources nucléaires et réduit les déchets radioactifs. Le comportement mécanique du MOX sous irradiation est crucial pour garantir l’intégrité du combustible dans diverses conditions de fonctionnement.

L’objectif de la thèse est de réaliser des simulations atomistiques afin de comprendre la mobilité des dislocations, essentielle pour soutenir la modélisation multiéchelle du comportement mécanique du MOX. Des calculs de dynamique moléculaire permettront d'analyser la mobilité des dislocations en fonction de diverses conditions de température, de contraintes, de teneur en plutonium et de déviations à la stœchiométrie, avec pour but d’établir des lois de vitesse. Les résultats de ces simulations amélioreront la modélisation micromécanique dans la plateforme de simulation PLEIADES du CEA, dédiée à la simulation du cycle de vie complet du combustible nucléaire, de sa fabrication jusqu'à l’entreposage.

Le doctorant sera accueilli au Laboratoire de Modélisation du Comportement des Combustibles (Institut IRESNE, CEA-Cadarache), un environnement dynamique composé de 11 chercheurs et d'un nombre équivalent de doctorants. Situé en Provence, ce centre offre un cadre de travail agréable, entre les parcs naturels du Verdon et du Lubéron. La thèse se fera en collaboration avec l'IM2NP, un laboratoire à la pointe de la recherche en physique des matériaux.

Le candidat doit avoir de solides bases en physique des matériaux, idéalement en mécanique aux petites échelles. Ces compétences pourront être renforcées durant un stage de M2 au sein du laboratoire. Le doctorant valorisera son travail à travers des publications scientifiques et des présentations en conférences internationales, ouvrant ainsi des opportunités dans les domaines de la recherche et de l'industrie.

Matériaux fonctionnels luminescents développés par fabrication additive pour le suivi de la corrosion

Dans le cadre de la transition énergétique, prolonger la durée de vie des composants métalliques exposés à des environnements corrosifs est essentiel, notamment dans l'industrie nucléaire, où les conditions agressives entraînent une dégradation rapide. Les méthodes de maintenance actuelles, comme les contrôles non destructifs par ultrasons, sont limitées pour détecter la corrosion localisée. Pour y remédier, des techniques basées sur la luminescence ont été développées pour un suivi in situ de la perte de matière. Des recherches récentes ont démontré l'intégration de luminophores dans des composants métalliques par fabrication additive, offrant ainsi des propriétés optiques et la possibilité de servir de marqueurs de corrosion. Cependant, leur comportement en milieu corrosif et leurs caractéristiques luminescentes nécessitent une exploration approfondie.
Ce projet de thèse vise à intégrer dans des matrices métalliques divers candidats luminescents par fusion laser sur lit de poudre (L-PBF) tout en étudiant l'interdépendance entre microstructure et corrosion. La corrosion sera évaluée dans des milieux salins et acides nitriques pour identifier les mécanismes de corrosion et optimiser l'application. Les essais de corrosion (immersion et électrochimiques), accompagnés d'observations microstructurales, permettront d’évaluer la durée des luminophores sur la structure avant de migrer dans le milieu, information essentielle pour définir le dispositif de détection et les intervalles de maintenance. Un banc d'essai sera également mis en place pour surveiller la corrosion in situ.

Structure et mobilité des agrégats et boucles d'interstitiels dans l'oxyde d'uranium

L’oxyde d’uranium (UO2) est le combustible usuel des centrales nucléaires à fission. A ce titre son comportement sous irradiation est très étudié. L’irradiation crée des défauts lacunaires ou interstitiels qui vont piloter l’évolution de la microstructure du matériau qui elle-même va impacter ses propriétés physiques (par exemple sa conductivité thermique) et mécaniques. Les agrégats d’interstitiels en particulier jouent un rôle prépondérant.
D’une part, aux plus petites tailles, la diffusion des interstitiels dans UO2 est encore assez mal comprise. En effet, expérimentalement, on observe l’apparition de boucles de dislocations constituées d’interstitiels de tailles pouvant atteindre la dizaine de nanomètres. A l’inverse on n’observe pas de cavités et les défauts lacunaires restent de tailles subnanométriques. Cela dénote une diffusion plus rapide des interstitiels que des lacunes, la diffusion permettant l’agglomération des interstitiels et la formation de boucles. Pourtant les calculs à l’échelle atomique ne montrent pas de différence majeure entre les coefficients de diffusion des lacunes et des interstitiels dans UO2. Une hypothèse pour expliquer cette contradiction apparente est que ce seraient les agrégats d’interstitiels qui diffuseraient rapidement (Garmon, Liu et al. 2023).
D’autre part, on s’attend à ce que les agrégats d’interstitiels tridimensionnels soient les germes des boucles de dislocations observées en microscopie électronique à transmission dans l’oxyde d’uranium irradié. Mais les mécanismes de transformations des agrégats en boucles et de changement de nature de boucles restent incompris dans l’oxyde d’uranium. Ces mécanismes ont très récemment été élucidée pour des métaux cubique à face centré (Jourdan, Goryaeva et al. 2024). Il est possible que des mécanismes comparables soient à l’œuvre dans UO2 avec la complication induite par l’existence deux sous-réseaux.
Nous proposons donc d’étudier par simulations à l’échelle atomique les agrégats d’interstitiels dans UO2.
On abordera d’abord la structure de ces agrégats subnanométriques tridimensionnels. Pour ce faire nous utiliserons les outils de classification des structures de défauts par intelligence artificielle mises au point au laboratoire (Goryaeva, Lapointe et al. 2020). On étudiera la diffusion de ces objets, par dynamique moléculaire et par recherche automatique de cols de migration à l’aide d’outils de type kinetic-ART (Béland, Brommer et al. 2011). Dans un deuxième temps, on étudiera la stabilité relative des agrégats 3D et des boucles de dislocations fautées et parfaites et les transformations entre ces différents objets.
Cette étude devra reposer sur des potentiels d’interaction interatomiques. On commencera par utiliser les potentiels empiriques disponibles dans la littérature avant nous tourner vers les potentiels de type Machine Learning (Dubois, Tranchida et al. 2024) en développement au Département d’Etudes du Combustibles du CEA Cadarache.

Béland, L. K., et al. (2011). "Kinetic activation-relaxation technique." Physical Review E 84(4): 046704.

Chartier, A., et al. (2016). "Early stages of irradiation induced dislocations in urania." Applied Physics Letters 109(18).

Dubois, E. T., et al. (2024). "Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials." Physical Review Materials 8(2).

Garmon, A., et al. (2023). "Diffusion of small anti-Schottky clusters in UO2." Journal of Nuclear Materials 585: 154630.

Goryaeva, A. M., et al. (2020). "Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores." Nature Communications 11(1).

Jourdan, T., et al. (2024). "Preferential Nucleation of Dislocation Loops under Stress Explained by A15 Frank-Kasper Nanophases in Aluminum." Physical Review Letters 132(22).

Compréhension des mécanismes de piégeage de l’hélium dans des nouvelles nuances d’alliages base nickel développées pour les réacteurs à sel fondu

Les alliages base nickel sont les matériaux de structure naturels envisagés pour les Réacteurs à Sel Fondu (RSF). Ils présentent d’excellentes caractéristiques mécaniques et une bonne résistance à la corrosion. Dans ces matériaux, la production d’hélium, principalement causée par la transmutation du nickel par les neutrons rapides peut atteindre des teneurs suffisantes pour fragiliser fortement le matériau ou provoquer son gonflement sous irradiation. L’hélium est très peu soluble dans le matériau et condense sous forme de bulles ou ségrége aux joints de grains. Pour limiter ces phénomènes et réussir à piéger l’hélium, une solution consiste à introduire dans le matériau qui sera irradié, une densité importante de nano-précipités dont les interfaces serviront de site de germination pour des bulles nanométriques à même de piéger l’hélium « sur place » pour empêcher ce dernier de migrer vers les joints de grains et de dégrader les performances du matériau. Il s'agira d'étudier par microscopie électronique en transmission corrigée la cinétique de précipitation des phases thermodynamiquement attendue ainsi que la structure atomique des interfaces formées entre les précipités et la matrice. Une simulation de la précipitation par champ de phase sera également envisagée. Enfin, les mécanismes de piégeage de l'He aux interfaces sera étudié à l'aide de la spectroscopie de perte d'énergie des électrons (EELS).

Simulation atomistique de la rupture de verres borosilicatés hétérogènes

Les verres borosilicatés hétérogènes contiennent des précipités cristallins ou amorphes qui forment des phases secondaires incrustées dans la matrice vitreuse. Ces matériaux sont appréciés pour leur résistance élevée au choc thermique et leur excellente durabilité chimique, les rendant idéaux pour diverses applications telles que les ustensiles de cuisine et le matériel de laboratoire. En particulier, dans l'industrie nucléaire, de nombreuses matrices vitreuses de conditionnement de déchets radioactifs contiennent des précipités en raison de la présence d'éléments peu solubles.

Il a été démontré que des phases secondaires peuvent affecter considérablement les propriétés mécaniques, en particulier la résistance à la fracture. Cependant, les mécanismes spécifiques liés à ce phénomène à l'échelle atomique restent mal expliqués. En particulier, il est crucial de comprendre l'effet de la nature de ces phases (cristallines ou amorphes) et de leur interface avec la matrice vitreuse.

L'objectif principal de ce projet est d'étudier les mécanismes spécifiques par lesquels les précipités influencent les propriétés mécaniques à l'échelle atomique. Il vise également à comprendre comment ces précipités affectent la propagation de fissures. Pour cela, des outils de modélisation numérique basés sur la dynamique moléculaire seront utilisés. Cette technique simule le comportement individuel des atomes au fil du temps sous différentes conditions de test. Ainsi, elle permet d'examiner la structure locale des pointes de fissure et leur interaction avec les précipités à l'échelle atomique, fournissant des informations précieuses sur les mécanismes sous-jacents de résistance aux fissures dans les verres hétérogènes.

Top