Études théoriques des phénomènes orbitroniques et de spin-orbite dans les hétérostructures comprenant des matériaux de van der Waals, des métaux et des oxydes

Ce thèse de doctorat vise à trouver les meilleures combinaisons inexplorées de métaux de transition, d'oxydes et de matériaux 2D (dichalcogénures de métaux de transition, aimants 2D, graphène...) pour aider à optimiser et à fournir les bases scientifiques des dispositifs de stockage et de mémoire spintroniques à haut rendement énergétique, basés sur les domaines émergents de la spin-orbitronique et de l'orbitronique. Cette dernière est un nouveau domaine de recherche fascinant qui exploite les courants orbitaux et leur interaction avec les courants de spin médiés par le couplage spin-orbite.

En utilisant de calculs ab initio combinés à une approche liaison fort et à la théorie de la réponse linéaire, nous examinerons le potentiel des hétérostructures susmentionnées non seulement pour les phénomènes spin-orbite tels que l'interaction Dzyaloshinskii-Moriya (DMI), l'anisotropie magnétique perpendiculaire (PMA) et l'interconversion spin-charge basée sur les effets Rashba et Rashba-Edelstein (REE), mais nous nous concentrerons également sur l'effet orbital Rashba-Edelstein (OREE). En outre, les mécanismes de contrôle de ces phénomènes par des stimuli externes (déformation, champs électriques et magnétiques externes) seront également étudiés. Ces études permettront de trouver des combinaisons de matériaux optimales pour assurer l'efficacité de la DMI, de la PMA et de l'interconversion spin-charge afin d'optimiser les dispositifs spintroniques et de contribuer ainsi de manière significative au développement d'une microélectronique durable.

Le projet de these sera basé sur une approche multi-échelle incluant des approches ab initio, liaison forte et atomistiques. Un candidat très motivé avec une bonne expérience en physique du solide, en théorie de la matière condensée et en simulations numériques est donc requis. Il/elle effectuera ses calculs sur les nœuds du cluster de calcul Spintec en utilisant des codes ab initio basés sur la théorie de la fonctionnelle de la densité (DFT) combinés à d'autres codes/outils de simulation. Les résultats obtenus seront analysés avec soin et pourront être publiés dans des revues scientifiques internationales. Une forte collaboration avec des laboratoires en France (CEA/LETI, Laboratoire Albert Fert (CNRS,Thales), Aix-Marseille Univ...) et à l'étranger (ICN2-Barcelone, PGI Forschungszentrum Jülich, Osaka University) est prévue.

Décrypter les rôles de la chimie de surface et de la structuration multi-échelle dans le contrôle des performances de stockage des supercondensateurs à base de graphène

L'objectif de ce projet de recherche fondamentale est d’élucider les corrélations existantes, entre les propriétés des matériaux à base de graphène et leurs performances de stockage électrochimique, en dispositif supercondensateur. L’importance de la chimie de surface et celle de la structure multi-échelle de ces matériaux seront spécifiquement étudiées, car la plupart des propriétés physico-chimiques de ces matériaux découlent de ces 2 paramètres. Aussi, des matériaux spécifiquement conçus pour présenter des chimies de surface différentes (dopage N, différents degrés de réduction…) et différentes structurations seront synthétisés et caractérisés, en utilisant des méthodes classiques à avancées (CV-SANS, in-situ SANS…), spécifiquement adaptées à l’étude de ces propriétés et de leur évolution en cours de cyclage électrochimique. Les résultats obtenus permettront de fournir une compréhension multi-échelle du mécanisme de stockage et aideront à concevoir des matériaux dotés de propriétés de stockage optimisées.

Photocommutation de fluorescence pour une porte excitonique

Le transfert d'énergie par résonance de type Förster (FRET) permet la diffusion d'excitons entre molécules sur une distance caractéristique de 1 à 10 nm. L'association de plusieurs fluorophores est une solution pour faciliter la diffusion des excitons sur une plus grande distance, en mettant à profit les phénomènes d'homo-FRET et d'hétéro-FRET. La FRET est un aspect fondamental pour le développement de dispositifs à luminescence photocommutable. Au niveau moléculaire, ces systèmes reposent sur l'association de deux composés : une entité luminescente et un composé photochrome. La formation de nano-objets avec des molécules similaires permet de tirer parti des transferts d'énergie multiples qui impactent photochromisme et luminescence. Cependant, ces systèmes sont peu utilisés en logique moléculaire, et commutent entre un état lumineux à un état sombre. Le remplacement de l’état sombre par un autre état émissif permettrait la diffusion de l'exciton sur de plus longues distances et sa détection.

L'objectif du projet FLUOGATE est la préparation et la caractérisation de nanostructures moléculaires luminescentes photocommutables qui se comportent comme une porte excitonique. L'étape initiale est la préparation et l'étude de monocouches 2D photocommutables avec une organisation contrôlée. La combinaison de mesures optiques et par sonde locale permettra la caractérisation de la photocommutation de fluorescence suite au changement structurel à l'échelle de la molécule unique et la détermination du rayon d'inhibition. Ensuite, la préparation et l'étude d'architectures 3D seront réalisées. Des couches du fluorophore donneur seront déposées juste au-dessus du substrat, suivies de couches du composé photochrome et enfin de couches du fluorophore accepteur. Le but ultime consistera à remplacer la couche photochrome par des nanoparticules photochromes dispersées dans une une matrice polymère.

Modélisation ab-initio des propriétés de l’oxyde de praséodyme pour l’électrolyse haute température

Les cellules à oxyde solide (SOC) sont des systèmes de conversion d'énergie réversibles et efficaces pour la production d'électricité et d'hydrogène décarboné. Elles sont aujourd'hui considérées comme l'une des solutions technologiques clés pour la transition vers un marché de l'énergie renouvelable. Un SOC est constitué d'un électrolyte dense pris en sandwich entre deux électrodes poreuses. À ce jour, la commercialisation à grande échelle des SOC nécessite encore l'amélioration de leurs performances et de leur durée de vie. Dans ce contexte, les principales limitations en termes d'efficacité et de dégradation des SOCs ont été attribuées à l'électrode à oxygène conventionnelle en La0.6Sr0.4Co0.2Fe0.8O3. Pour résoudre ce problème, il a récemment été proposé de remplacer ce matériau par une électrode alternative basée sur le PrOx. En effet, ce matériau présente une activité électro-catalytique élevée pour la réduction de l'oxygène et de bonnes propriétés de transport. Les performances des cellules incorporant cette nouvelle électrode sont prometteuses et pourraient permettre d'atteindre les objectifs requis pour une industrialisation à grande échelle (c.-à-d -1,5A/cm2 à 1,3V à 750°C et un taux de dégradation de 0,5%/kh). Cependant, il a également été démontré que le PrOx subit des transitions de phase en fonction des conditions de fonctionnement de la cellule. L'impact de ces transitions de phase sur les propriétés de l'électrode et sur ses performancesest encore inconnu. Par conséquent, l'objectif de ce doctorat est d'acquérir une compréhension approfondie des propriétés physiques du PrOx et leur influence sur la performance de l'électrode à l’aide d’une méthodologie combinant des calculs ab-initio et la modélisation électro-chimique.

Dynamique de fracture dans des technologies de transfert de couches cristallines

Le Smart Cut™ est une technologie découverte au CEA et désormais utilisée industriellement pour la fabrication de substrats avancés pour l'électronique. Cependant, les phénomènes physiques mis en jeu dans sa mise en œuvre font encore l'objet de nombreuses études au CEA. Dans le Smart Cut™, une fine couche de matériau est transférée d'une plaquette à l'autre en utilisant une étape clé de recuit de fracture durant laquelle une fracture macroscopique s'initie et se propage à plusieurs km/s [i].
____________
L'amélioration de la technologie nécessite une solide compréhension des phénomènes physiques impliqués dans l'étape de fracture. L'objectif de ce projet de doctorat est donc d'étudier les mécanismes impliqués dans l'initiation et la propagation des fractures, ainsi que les vibrations post-fracture.
____________

Sur le site du CEA-Grenoble, avec un intérêt industriel, l'étudiant utilisera et développera les dispositifs expérimentaux existants pour étudier le comportement de la fracture dans les matériaux fragiles, y compris les réflexions laser optiques [iv], l'imagerie synchrotron diffractante résolue dans le temps [iii], et l'imagerie directe ultra-rapide [ii].
En outre, des algorithmes d'analyse de données basés sur python seront développés pour extraire des informations quantitatives des différents ensembles de données. Cela permettra à l'étudiant de déterminer les mécanismes impliqués et d'évaluer l'influence des paramètres de traitement des plaquettes sur le comportement de la fracture, et donc de proposer des méthodes d'amélioration.

Références :
[i] https://pubs.aip.org/aip/apl/article/107/9/092102/594044
[ii] https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024068
[ii] https://journals.iucr.org/j/issues/2022/04/00/vb5040/index.html
[iv] https://pubs.aip.org/aip/jap/article/129/18/185103/158396

Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique

Depuis les années 1950, le recours aux plastiques pétrosourcés a créé un monde moderne consumériste basé sur l’utilisation de produits jetables. La production mondiale considérable de déchets plastiques a presque doublé en 20 ans, atteignant aujourd’hui les 468 millions de tonnes par an. Ces déchets plastiques, non biodégradables, engendrent de nombreuses pollutions environnementales (perturbations de la faune et de la flore, pollutions des eaux et des sols, etc.).. A peine 9% de ces déchets ont été recyclés, le reste étant brulé ou stocké en décharges. Les problèmes sanitaires, climatiques et sociétaux inhérents à cette économie linéaire imposent de créer une circularité de ces matières en développant des voies de recyclages efficaces et robustes. Alors que les voies actuelles de recyclage reposent en majorité sur des procédés mécaniques et se restreignent à des gisements particuliers de déchets (e.g. les bouteilles d’eau plastiques), le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. De tels procédés chimiques permettent de récupérer la matière carbonée des plastiques pour en régénérer de nouveaux.

Dans cet objectif de circularité de la matière, le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, boîtiers disjoncteurs, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux, comme les alcools et l’acide formique seront développés. L’utilisation du dihydrogène, réducteur industriel, sera également considérée. Dans le but d’optimiser ces systèmes catalytiques, nous chercherons à comprendre leur mode de fonctionnement et les mécanismes impliqués.

Porte à deux bits quantiques à base d'hétérostructures de Germanium

Nous travaillons sur les qubits de spin en germanium, un matériau prometteur et polyvalent pour concevoir des bits quantiques de spin. Dans ces « hétérostructures », les trous sont hébergés dans une couche de germanium prise en sandwich entre deux couches de silicium/germanium. Ces trous présentent une mobilité très élevée et, contrairement aux spins électroniques qui ne sont sensibles qu'aux champs magnétiques, les spins des trous peuvent être manipulés par un champ électrique, c'est-à-dire par des tensions sur une grille. Ce contrôle entièrement électrique présente un inconvénient : les spins deviennent sensibles au bruit électrique et donc au bruit de charge dans les dispositifs. Les hétérostructures de germanium sont dotées de grilles métalliques qui écrantent en grande partie le bruit de charge provenant des défauts qu'elles recouvrent; cependant, dans les régions non couvertes par les grilles, les charges non écrantées sont responsables du bruit de charge qui limite le temps de cohérence.
Nous sommes en train d'acquérir un équipement de salle blanche unique combinant le dépôt et la gravure de couches atomiques, qui permettra de développer des structures originales où les grilles pénètrent profondément dans l'hétérostructure, afin de contourner l'effet de ces charges solitaires sur la surface dans le cas des grilles en surface. Grâce à cette nouvelle approche, la définition et la manipulation des points quantiques seront extrêmement simplifiées, et nous prévoyons d'obtenir des dispositifs de portes à deux qubits dans cette thèse.

Etude de la catalyse de l’acide nitrique sur les aciers inoxydables

Le vieillissement des matériaux (principalement des aciers inoxydables) de l’usine de retraitement des combustibles nucléaires usés fait l’objet d’une importante activité de R & D au CEA. Le contrôle de ce vieillissement sera réalisé par une meilleure compréhension des mécanismes de corrosion des aciers inoxydables en acide nitrique (l'agent oxydant utilisé dans les étapes de retraitement).
L'objectif de la thèse est de développer un modèle de corrosion d’un acier inoxydable en fonction de la température et de la concentration en HNO3 via la quantification des produits de corrosion. Cette thèse représente un réel challenge technologique car actuellement peu d’études existent sur des mesures électrochimiques in situ dans l’acide nitrique chaud et concentré. Le doctorant réalisera également un travail expérimental important en couplant des mesures électrochimiques, des analyses chimiques (spectrométrie UV-visible-IR ...) et des analyses de surfaces (SEM, XPS,…). Sur la base de ces résultats expérimentaux, un modèle sera développé, qui sera incorporé à l'avenir dans un modèle plus global du vieillissement des équipements industriels de l'usine.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée qui a l'habitude de recevoir des étudiants.

Magnons topologiques dans les matériaux quantiques

La topologie est devenue un paradigme essentiel en matière condensée, permettant de classer les phases de la matière selon des propriétés invariantes sous des déformations continues. Les premières recherches dans ce domaine se sont essentiellement concentrées sur les structures de bandes électroniques, conduisant par exemple à la découverte des « isolants topologiques ». Cependant, ces concepts topologiques ne sont pas restreints seulement aux électrons (fermions) et ainsi, l'application de tels concepts aux bosons, en particulier les magnons, suscite un intérêt croissant. Les magnons, qui sont des excitations collectives dans les matériaux magnétiques, illustrent comment la topologie influence la dynamique magnétique et affecte le transport de chaleur et de spin. Des analogues d'isolants topologiques et de semi-métaux apparaissent dans leurs structures de bandes de magnons. Les magnons offrent ainsi une plateforme pour étudier l'interaction entre symétries magnétiques et topologie, examiner l'effet des interactions sur les bandes topologiques, et générer des courants de spin protégés aux interfaces. La recherche de matériaux contenant des magnons topologiques est donc cruciale, surtout pour les applications en magnonique, qui exploitent les ondes de spin pour le stockage et le traitement rapide des données.

Ce projet de thèse se consacre à explorer ces aspects topologiques dans des matériaux quantiques candidats à l’aide de techniques de diffusion de neutrons et de rayons X dans les grandes infrastructures de recherche (ILL, ESRF, SOLEIL), pour analyser la structure de bande des magnons à la recherche de caractéristiques topologiques, comme les points de Dirac ou de Weyl. Les résultats expérimentaux seront soutenus par des calculs théoriques des bandes magnoniques intégrant des concepts topologiques.

Imagerie des champs de déformations dans les semi-conducteurs: du matériau au dispositif

Ce sujet traite de la visualisation et de la quantification des champs de déformation dans les matériaux semi-conducteurs, par des techniques utilisant le rayonnement synchrotron. Le contrôle de la déformation est fondamental pour optimiser les propriétés de transport électronique, mécaniques et thermiques. Dans une approche duale, nous combinerons la détermination du tenseur local de déformation déviatorique en balayant l'échantillon sous un nano faisceau polychromatique (µLaue) et une imagerie d'un champ de vu donné (microscopie aux rayons X en champ sombre, DFXM).

Des recherches originales s’intéresseront à améliorer l’analyse : (1) de la précision et de la vitesse de détermination quantitative des champs de déformation, (2) des distributions des gradients de déformation, et (3) du champ de déformation dynamique dans les matériaux piézoélectriques par des mesures stroboscopiques. Pour illustrer ces points, trois cas scientifiques correspondant à des matériaux microélectroniques pertinents et de complexité croissante seront étudiés :

1.Champs de déformation statiques entourant des contacts métalliques dans le Si, tels que les vias à travers le silicium (TSV) à haute densité dans la technologie CMOS.
2.Gradients de déformation dans des structures hétéroépitaxiales complexes Ge/GeSn avec des variations de composition le long de la direction de croissance.
3.Études de déformation dynamique de résonateurs acoustiques LiNbO3 en volume avec une fréquence de résonance dans la plage des MHz.

La validation de cette approche conceptuelle permettra une avancée significative dans le domaine de la microélectronique et l'ingénierie de déformation.

Top