Suivi et modélisation de l'évolution des propriétés microstructurales au cours de la fabrication du combustible MOX : impact de la chamotte
Le combustible nucléaire MOX (Mixed OXide), céramique obtenue à partir d’un mélange d’oxydes d’uranium et de plutonium, constitue une alternative stratégique pour la valorisation du plutonium provenant du retraitement des combustibles usés. Les pastilles de MOX sont fabriquées industriellement par un procédé de métallurgie des poudres couplé à une densification du matériau avec un frittage à haute température. Les rebuts de production sont réintroduit dans le procédé sous forme de poudre chamottée. Cependant, l’influence de la teneur et de la nature de cette chamotte sur la stabilité microstructurale du matériau reste encore mal connue, notamment lors des étapes de pressage et de frittage. Ceci constitue un élément clé à la fois sur la tenue mécanique et le comportement en réacteur des combustibles MOX. Une meilleure compréhension de ces phénomènes, associée à une modélisation fine, permettrait d’optimiser les procédés industriels et d’améliorer à terme la fiabilité de ces combustibles.
L’objectif de ce projet de thèse est d’étudier et de modéliser l’évolution des propriétés microstructurales du combustible MOX en fonction de la teneur et de la nature de la chamotte ajoutée lors de la fabrication. La stratégie de la thèse s’appuiera sur une approche intégrée combinant une étude expérimentale à des simulations numériques. Elle repose sur une caractérisation multi-échelle de la microstructure couplant des techniques d’imagerie et de spectroscopie et sur une reconstruction tridimensionnelle de la microstructure à partir d’images 2D expérimentales. L’objectif étant à terme de relier les propriétés élastiques du matériau à sa microstructure. Ces travaux s’appuieront sur une approche couplant expérience et modélisation, qui conjuguera l’expertise de l'équipe encadrante dans la mise en œuvre d’expérimentations sur matériaux plutonifères et dans la modélisation numériques (modélisation micromécanique, calcul FFT).
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales ainsi que des méthodes pointues de modélisation numérique sur matériaux céramiques. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.
Développement de supports fonctionnalisés pour la décontamination de surfaces complexes contaminées par des agents chimiques
Dans le cas d’une contamination par un agent chimique toxique, la prise en charge commence par une décontamination d’urgence rapide. Les personnes intervenant sur le terrain doivent tenir compte du risque de transfert de contamination, notamment en portant des tenues de protection adaptées. Ces tenues, ainsi que le petit matériel utilisé, doivent ensuite être décontaminés avant d’envisager le déshabillage pour éviter l’auto-contamination. La procédure comprend une phase de décontamination « sèche » généralement par application de poudres (souvent des argiles) qui sont ensuite essuyées à l’aide d’un gant ou d’une éponge. Cependant, ce dispositif ne neutralise pas les contaminants chimiques et la poudre se ré-aérosolise facilement, l’utilisation est donc limitée aux milieux non confinés et aérés. L’objectif est de cette thèse est d’élaborer une technologie alternative, pour la décontamination de surfaces complexes (tenues, petit matériel). Nous proposons d’étudier la fonctionnalisation de différents supports (tels que des gants, lingettes, microfibres, éponges, hydrogels…) par des particules adsorbantes (zéolithes, oxydes céramiques, MOFs…). Une étude bibliographique préliminaire permettra de sélectionner les adsorbants et supports les plus adaptés pour la capture d’agents chimiques modèles. Les travaux se focaliseront sur la préparation des supports, et différentes voies d’incorporation des particules dans/sur ces supports seront comparées. Les matériaux seront caractérisés (taux d’incorporation, homogénéité, tenue mécanique, non ré-aérosolisation…), puis leurs propriétés de transfert, de sorption et d’inactivation vis-à-vis de molécules modèles seront évaluées.
Ce sujet s'adresse à des chimistes, dynamiques, motivés par la pluridisciplinarité du sujet (chimie des matériaux minéraux et/ou polymères, caractérisation du solide et chimie analytique), et ayant un attrait particulier pour le développement de dispositifs expérimentaux. Le/la candidat(e) évoluera au sein du Laboratoire des Procédés Supercritiques et Décontamination sur le site de Marcoule, et bénéficiera de l’expertise du laboratoire en décontamination et en élaboration de matériaux adsorbants, ainsi que du soutien et de l'expertise de l'ICGM à Montpellier sur les polymères fonctionnels et les hydrogels. L’étudiant(e) interagira avec les techniciens, ingénieurs, doctorants et post-doctorants du laboratoire. Le/la doctorant(e) sera impliqué(e) dans les différentes étapes du projet, le reporting et la publication de ses résultats, et la présentation de ses travaux dans des conférences. Il/Elle développera de solides connaissances dans les domaines du nucléaire et de l’environnement, ainsi qu’en gestion de projet.
Étude du transport des impuretés dans des plasmas à triangularité négative et positive
La fusion nucléaire dans un tokamak est une source d'énergie prometteuse. Cependant, une question se pose : quelle configuration plasma est la plus susceptible de produire de l'énergie nette ? Pour contribuer à y répondre, au cours de cette thèse, nous étudierons l’impact de la géométrie magnétique (comparaison entre triangularité positive et négative) sur le transport collisionnel et turbulent du tungstène (W). Les performances d’un tokamak dépendent fortement du confinement de l’énergie qu’il peut réaliser. Le confinement se dégrade fortement en fonction du transport turbulent et du rayonnement, ce dernier étant principalement émis par le W. Sur ITER, la quantité tolérée de W au cœur du plasma est d’à peine 0,3 microgrammes environ. Des expériences ont montré que la géométrie plasma à triangularité négative (NT) est bénéfique pour le confinement car elle réduit significativement le transport turbulent. Cette géométrie permet d'atteindre un confinement équivalent à celui obtenu avec la configuration ITER (mode-H en triangularité positive), sans les limitations d’une puissance seuil minimale et sans les relaxations du bord du plasma qui lui sont caractéristiques. Cependant, des questions subsistent : quel niveau de transport du W est rencontré en NT comparé à la géométrie positive ? Quel niveau de rayonnement peut-on espérer dans des futurs réacteurs en NT ? Pour contribuer à répondre à ces questions, au cours de cette thèse, nous évaluerons le rôle de la triangularité sur le transport des impuretés dans différents scénarios dans WEST. La première phase du travail est expérimentale. Ensuite, la modélisation du transport d’impuretés sera réalisée en utilisant des modèles collisionnels et turbulents. Une collaboration est prévue avec des experts internationaux en plasma dans des configurations NT, avec UCSD (États-Unis) et EPFL (Suisse).
L’étude des relations microstructure-propriétés est un domaine considérable de la métallurgie et plus généralement de l’ingénierie des matériaux. C’est par exemple leur microstructure martensitique, due à un changement de phase dans le fer, qui est responsable de la dureté des aciers trempés. Ici, nous abordons une métallurgie de l’extrême, en soumettant des échantillons métalliques à des pressions dans le domaine des 100 GPa (=1 millions d’atmosphères), ce qui permet de synthétiser des phases cristallines nouvelles et présentant potentiellement des propriétés intéressantes (dureté, magnétisme, etc.).
Nos systèmes d’étude seront l’étain, puis l’indium et le cobalt, qui présentent tous trois un polymorphisme riche sous haute pression et température. Nous chercherons à élucider le rôle des défauts comme les macles et de la plasticité sur le mécanisme et la cinétique de ces transitions. Ceci sera fait en comparant les observations expérimentales aux prédictions de microstructures par simulation mésoscopique. Les outils de génération de haute pression/température utilisés seront notamment la cellule à enclumes de diamants chauffée par laser, et les outils de caractérisation l’imagerie X in situ par diffraction et la tomographie, ainsi que la microscopie électronique. Les sources de rayons X utilisées seront des sources synchrotron ainsi que le laser X à électrons libres européen.
Développement de spectres Raman théoriques avec application aux minéraux de la surface de Mars
À mesure que nous repoussons les frontières de l’exploration spatiale avec de nouvelles missions vers les planètes voisines, il devient essentiel d’améliorer nos outils d’investigation. Les rovers martiens ont révélé une minéralogie de surface sans équivalent sur Terre, façonnée par une ancienne hydrosphère suivie d’un long épisode de conditions froides et arides. Il a été montré que se sont formés des perchlorates ou des phases vitreuses mixtes silicates-sels — des minéraux difficiles à synthétiser et à stabiliser sur Terre, mais qui demeurent étonnamment stables sur Mars. Les données récentes de spectrométrie Raman confirment leur présence et ouvrent la voie à des recherches approfondies. Comprendre ces minéraux pourrait offrir de nouvelles perspectives sur la chimie martienne et l’évolution planétaire.
Nous cherchons ici à calculer les spectres Raman théoriques des perchlorates et d’autres minéraux martiens à l’aide de la théorie de la perturbation de la fonctionnelle de la densité (DFPT), telle qu’elle est implémentée dans le logiciel ABINIT. L’objectif est d’obtenir non seulement la position et l’intensité des pics, mais aussi et surtout leur largeur. Ces données sont nécessaires pour distinguer correctement des spectres similaires et pour estimer, par intégration, l’intensité réelle des pics, directement comparable aux valeurs expérimentales mesurées sur le terrain. Cela permet d’identifier les pics représentatifs utilisables pour la reconnaissance des minéraux et d’analyser les modes de déplacement associés aux vibrations. Les résultats de nos simulations seront comparés et interprétés à la lumière des mesures effectuées par les rovers actuellement présents à la surface de Mars.
Pour cela, nous devons implémenter plusieurs dérivées d’ordre trois et quatre de l’énergie. Cette implémentation prendra la forme d’une série de termes DFPT, où les perturbations pourront être des déplacements atomiques ou des champs électriques. Nous utiliserons une combinaison du théorème du (2n+1) et de différences finies. Le tout sera réalisé dans le cadre de l’approche "Projector Augmented-Wave" (PAW) en DFT. L’ensemble du développement sera intégré dans le logiciel ABINIT et mis à la disposition de toute la communauté. ABINIT (www.abinit.org) est un projet collaboratif international à grande visibilité, dédié aux simulations ab initio basées sur la DFT et la DFPT. Les spectres calculés seront mis à disposition de la communauté via la base de données WURM.
Le candidat retenu sera co-encadré entre les groupes de l’IPGP (Paris) et du CEA (Bruyères-le-Châtel, au sud de Paris). L’IPGP est un institut de recherche en géosciences de renommée mondiale, fondé en 1921, associé au CNRS, composante de l’Université Paris Cité, et employant plus de 500 personnes. Le groupe dirigé par Razvan Caracas est très actif dans la minéralogie computationnelle, l’étude de la matière dans des conditions extrêmes et la planétologie. Le groupe de simulation quantique de la matière du CEA Bruyères-le-Châtel, coordonné par Marc Torrent, est l’un des principaux groupe de développement du logiciel ABINIT, et particulièrement actif dans la théorie de la fonctionnelle de la densité, l’approche PAW et le calcul haute performance.
Spectroscopie attoseconde de photoémission des gaz moléculaires et des liquides
L'objectif de cette thèse est de développer la spectroscopie de photoémission attoseconde des molécules en phases gazeuse et liquide à l'aide d'un nouveau système laser Ytterbium haute cadence. Ces études permettront de dévoiler en temps réel les processus de photoionisation en couche interne/externe et la dynamique de diffusion électronique.
Jonctions Tunnel Magnétiques aux limites
L'électronique de spin, grâce au degré de liberté supplémentaire apporté par le spin de l'électron, permet de déployer une physique du magnétisme à petite échelle très riche, mais également d'apporter des solutions technologiques de ruptures dans le domaine de la microélectronique (stockage, mémoire, logique...) ainsi que pour la mesure du champ magnétique.
Dans le domaine des sciences du vivant et de la santé, des dispositifs à base de magnétorésistance géante (GMR) ont fait la démonstration de la possibilité de mesurer à échelle locale les champs très faibles produits par les cellules excitables (Caruso et al, Neuron 2017, Klein et al, Journal of Neurophysiology 2025).
La mesure de l'information contenue dans la composante magnétique associée aux courants neuronaux (ou magnétophysiologie) peut en principe donner un descriptif du paysage neuronal dynamique, directionnel et différentiant. Elle pourrait ouvrir la voie à de nouvelles modalités dans les implants, grâce à leur immunité à la gliose et à leur longévité.
Le verrou actuel est la très petite amplitude du signal produit (<1nT) qui nécessite de moyenner le signal pour le détecter.
Les magnéto-résistances tunnel (TMR), dans lesquelles est mesuré un courant tunnel polarisé en spin, présentent des performances de sensibilité de plus d'un ordre de grandeur par rapport au GMR. Elles présentent cependant actuellement un niveau de bruit à basse fréquence trop élevée pour en tirer tout le bénéfice, notamment dans le cadre de la mesure de signaux biologiques.
L'objectif de cette thèse est de repousser les limites actuelles des TMR, en réduisant le bruit à basse fréquence, pour les positionner comme capteurs de rupture pour la mesure de signaux très faibles, et pour leur potentiel d'amplificateur de petits signaux.
Pour atteindre cet objectif, une première voie reposant sur l'exploration des matériaux composant la jonction tunnel, en particulier ceux de la couche magnétique dite libre, ou sur l'amélioration de la cristallinité de la barrière tunnel, sera déployée. Une seconde voie, consistant à étudier les propriétés intrinsèques du bruit à basse fréquence, en particulier dans des limites jusque-là inexplorées, en très basses températures où les mécanismes intrinsèques sont atteints, permettra de guider les solutions les plus prometteuses.
Enfin, les structures et approches les plus avancées sur l'état de l'art ainsi obtenues seront intégrées à des dispositifs permettant d'une part d'avoir des briques de base pour au delà de l'état de l'art et offrant de nouvelles possibilité pour les applications de l'électronique de spin. D'autre part, ces éléments seront intégrés à des systèmes pour la cartographie en 2D (voire 3D) de l'activité d'un système biologique global (réseau neuronal) et d’évaluer les capacités pour des cas cliniques (comme l’épilepsie ou la réhabilitation motrice).
Il est à noter que ces TMR améliorées pourront avoir d’autres applications dans les domaines d’instrumentation physique, de contrôle non destructif ou d’imagerie magnétique.
Excitations électroniques dans des nano-objets unidimensionels : description ab initio et connection avec l’intrication quantique
La compréhension des propriétés électroniques des électrons de valence dans les nano-objets est à la fois d’un intérêt fondamental et essentiel pour la conception de nouveaux dispositifs optoélectroniques. Dans ces systèmes, le confinement des électrons en basse dimensionnalité leur confère des propriétés exceptionnelles.
Ces propriétés sont liées aux caractéristiques fondamentales de la matière et aux fluctuations quantiques associées. Récemment, l’intrication quantique et l’information quantique de Fisher ont été directement mises en relation avec des propriétés spectroscopiques. Part ailleurs, ces propriétés spectroscopiques sont accessibles par des expériences, telles que l’absorption, la photoémission et la diffusion inélastique des rayons X.
Récemment, nous avons montré que le formalisme largement utilisé pour étudier les nano-objets isolés n’était pas adapté, et que les propriétés optiques qui en avaient été déduites en étaient affectées. Nous avons mis en évidence, théoriquement et expérimentalement, que dans les objets bidimensionnels la réponse optique contenait, en plus de la contribution transverse, une résonance de type plasmon, correspondant à une réponse longitudinale. Le rôle de l’interface s’est révélé déterminant. Le projet que nous proposons cette année consiste à reconsidérer les propriétés optiques des objets unidimensionnels.
Une fois la méthodologie établie pour décrire la fonction diélectrique macroscopique en 1D, nous explorerons ses liens avec l’intrication quantique et l’information quantique de Fisher, qui n’ont encore jamais été évaluées pour des systèmes à basse dimensionnalité.
Couplage physico-chimique entre une population de bulles et l’oxydo-reduction d’un liquide formateur de verre
Le procédé de calcination-vitrification est la solution utilisée en France depuis plus de 30 ans pour le conditionnement des déchets nucléaires de haute activité issus du retraitement des combustibles usés. Au cours du procédé de vitrification, les déchets sont incorporés dans une fonte verrière borosilicatée à plus de 1000°C. La fonte est homogénéisée en température et composition par agitation et bullage de gaz. L’incorporation des déchets dans la fonte peut également conduire à des dégagements gazeux, dont ceux d’oxygène issus de réactions d’oxydo-réduction entre espèces dissoutes dans le liquide. Il est important de bien maîtriser l’impact de ces gaz sur le verre et le procédé.
L’état d’oxydo-réduction de la fonte à l’équilibre entre les espèces dissoutes a fait l’objet de différentes études au CEA dans le cadre la vitrification des déchets nucléaires. En revanche, peu d’études ont été consacrées à la cinétique de réaction des gaz dans la fonte. L’objectif de cette thèse vise à étudier et à modéliser l’impact des bulles de gaz, quelle que soit leur nature, sur le redox de la fonte et la cinétique des réactions associées. Une approche couplant l’expérimentation et la modélisation numérique sera adoptée.
Le candidat recherché aura un goût pour l’expérimentation, la caractérisation et l’interprétation de résultats abordant différents domaines scientifiques (physico-chimie des matériaux, électrochimie). L’ensemble des expériences seront conduites sur des éléments non radioactifs et impliqueront un traitement par modélisation numérique. Cette thèse lui permettra d'acquérir une expérience professionnelle valorisable dans le milieu des verres et du nucléaire.
Propriétés physico-chimiques des verres photovoltaïques (PV) contenant de l'antimoine (Sb)
La thèse proposée s’inscrit dans le cadre du projet ANR GRISBI (2026-2030), qui vise à optimiser le recyclage du verre présent dans les panneaux photovoltaïques. Ces verres, très majoritairement fabriqués en Chine, sont dopés en oxyde d’antimoine (Sb2O3) afin de garantir une bonne transparence du verre, tout en minimisant les coûts de production. Cependant, cet antimoine empêche le recyclage de ces verres dans l’industrie européenne du verre plat, qui aurait pourtant besoin de cet apport de matière secondaire pour réduire son impact environnemental, entre-autres ses émissions de gaz à effet de serre (cf. l’objectif de neutralité carbone fixé par les Accords de Paris en 2015). Afin de rendre possible le recyclage du verre PV dans l’industrie du verre plat, il est donc nécessaire de mieux comprendre les propriétés physico-chimiques de l’antimoine dans le verre, et plus généralement dans le procédé float, qui met en jeu une interface verre chaud / étain liquide.
L’enjeu de la thèse réside ainsi dans la détermination des équilibres redox entre les différentes espèces multivalentes présentes dans les verres PV, en particulier entre les couples Sb2O3/Sb et Fe2O3/FeO. L’étude consistera donc à élaborer des verres présentant différentes teneurs en Sb2O3, puis à déterminer les mécanismes d’incorporation de l’antimoine dans les verres, ainsi que les conditions de température et de pO2 conduisant à la réduction de Sb3+ en Sb0. Les résultats expérimentaux, basés sur des caractérisations matériaux de type MEB, DRX, EXAFS, XANES, permettront de compléter les bases de données thermodynamiques, et de proposer une méthodologie permettant le recyclage des verres PV dopés à l’antimoine dans la production de verre plat.
La thèse se déroulera au CEA Marcoule, en collaboration avec l’IMPMC (Sorbonne Université), deux laboratoires dont les expertises dans le domaine des matériaux vitreux sont reconnues à l’international. L’ensemble des travaux sera réalisé sur des verres élaborés par le(la) doctorant(e), et leur caractérisation s’appuiera principalement sur les outils disponibles au sein du CEA et de l’IMPMC. Un profil en Sciences des Matériaux est recherché. Le sujet permettra au doctorant de pouvoir valoriser in fine un parcours de recherche appliquée.