Compréhension des mécanismes de l’hydrogénation par voie directe du CO2 par des catalyseurs (Na,K)FeOx via un couplage théorique-expérimental
Face au dérèglement climatique, la sobriété énergétique pour réduire nos émissions de CO2 s'impose. Une autre solution au problème existe : la capture, le stockage et l'utilisation du CO2, et ce afin de tendre vers une économie circulaire du carbone, et à terme la défossilisation. Dans cette optique, l'hydrogénation par voie directe du CO2 permet de le transformer en molécules d'intérêts tels que les hydrocarbures, via le couplage de la réaction reverse water gas shift (RWGS) et de la synthèse Fischer-Tropsch (FTS).
La catalyse computationnelle operando a récemment émergé comme étant une alternative raisonnée au développement de nouveaux catalyseurs grâce à une approche multi-échelle de l’atome jusqu’à la particule active, afin de modéliser la sélectivité et l’activité du catalyseur. Les nouveaux outils combinant les simulations ab initio (DFT) et la dynamique moléculaire (MD) via des algorithmes de machine learning permettent de faire le lien entre la précision des calculs DFT et la puissance des simulations atomistiques. Les catalyseurs actuels bifonctionnels (car actifs pour la RWGS et la FTS) pour l’hydrogénation par voie directe du CO2 sont à base d’oxydes de fer dopés (promoteurs métalliques).
Ce projet a pour objectif l’étude théorique de catalyseurs de type Na-FeOx et K-FeOx dopés avec du Cu, Mn, Zn et Co, et ce en 4 étapes : les simulations DFT (énergies d’adsorption, densités d’états, barrières d’énergies, états de transition), la modélisation microcinétique (constantes de réaction, TOF), la construction de potentiels interatomiques par couplage DFT/machine learning, la simulation de particules entières (sélectivité, activité, grandeurs microscopiques).
Cette étude théorique ira de pair avec la synthèse et des mesures expérimentales des catalyseurs étudiés, et des catalyseurs optimisés émergeants des résultats computationnels. Toutes les données accumulées (DFT, MD, propriétés catalytiques) pourront alimenter une base de données, qui pourra être exploitée à terme pour faire émerger des descripteurs d’intérêt pour l’hydrogénation du CO2.
Contrôle magnéto-ionique de jonctions tunnel magnétiques pour des applications neuromorphiques
La magnéto-ionique est un domaine émergent qui offre un grand potentiel de réduction de la consommation d'énergie dans les applications de mémoire spintronique grâce au contrôle non-volatile des propriétés magnétiques par l'intermédiaire de tension de grille. En combinant le concept de mouvement ionique contrôlé par tension des technologies memristor, typiquement utilisées dans les applications neuromorphiques, avec la spintronique, ce domaine offre une opportunité unique de créer une nouvelle génération de fonctionnalités neuromorphiques basées sur des dispositifs spintroniques.
Le doctorat sera un projet de recherche expérimentale axé sur la mise en œuvre du contrôle par tension de grille d’effets magnéto-ioniques dans les dispositifs spintroniques à jonction tunnel magnétique. Le but ultime du projet est d'obtenir un contrôle fiable et non volatile de la commutation de l'aimantation dans les jonctions tunnel magnétiques à trois terminaux.
Un défi majeur reste à relever pour l'utilisation de la magnéto-ionique dans des applications pratiques, à savoir son intégration dans les jonctions tunnel magnétiques (MTJ), qui sont les éléments constitutifs des architectures de mémoire magnétique. Cela permettra non seulement de débloquer le contrôle dynamique des champs/courants de commutation dans les jonctions tunnel magnétiques afin de réduire la consommation d'énergie, mais aussi de contrôler la stochasticité, ce qui a des implications importantes dans l'informatique probabiliste.
Fabrication de membranes nanocomposites plasmoniques pour la détection de biomolécules
La détection de certaines biomolécules en faibles quantités constiue bien souvent un défi. Récemment, les nanomatériaux ont permis d’obtenir de nouveaux matériaux aux propriétés optiques permettant de répondre à un telle problématique, en particulier les nanomatériaux plasmoniques.
Dans ce projet, nous proposons la synthèse d’un type particulier de nanocomposites obtenus par l’insertion de nanoparticules (NPs) plasmoniques au sein de membranes polymères formées par track-etching. Le contrôle de la réponse plasmonique sera effectué grâce au contrôle précis de la synthèse in situ des NPs directement dans les nanopores de la membrane, en utilisant des méthodes chimiques et physico-chimiques. En particulier, la réduction in situ des précurseurs métalliques par irradiation (faisceau d’électrons, rayons ?) sera étudiée. Des faisceaux ionisants (ions lourds accélérés) serviront aussi à structurer la matrice polymère sous forme de membrane, avec une porosité contrôlée. Les relations entre les paramètres structuraux du composite et ses propriétés optiques seront étudiées avec rigueur, afin de déterminer le matériau idéal pour la détection de biomolécules, qui sera testé sur des molécules modèles telles que des protéines ou des particules-modèles de virus, dans la partie finale du projet.
Etude des processus électroniques dans les LEDs nitrures par microscopie d’électro-émission
Les LEDs à base de nitrures sont aujourd’hui universellement utilisées pour l’éclairage basse consommation. Elles sont extrêmement efficaces à faible teneur en indium et à faible densité de courant, ce qui permet de réaliser les LEDs blanches commerciales à partir d’une LED bleue et d’un phosphore qui absorbe le bleu et réémet un spectre large dans le visible. Cependant, les LEDs nitrures souffrent d’une chute d’efficacité drastique à plus forte densité de courant et à plus forte concentration en indium, pour une émission dans le vert ou le rouge. Cela est un frein à l’extension de leur utilisation, pour obtenir des meilleures efficacités avec moins de matériau ainsi qu’un meilleur rendu de couleur. Ces chutes d’efficacité sont en partie dues à une augmentation des processus Auger-Meitner à trois particules, qui sont fortement impactés par les hétérogénéités locales du dispositif, et peuvent être réduites par une ingénierie spécifiques des défauts structurels des matériaux nitrures. Cette thèse propose d’étudier les processus électroniques dans des LEDs nitrures in operando, grâce à la microscopie d’électro-émission. En particulier, les mécanismes d’injections des charges dans la partie active des LEDs ainsi que les processus Auger-Meitner seront investigués et quantifiés. La résolution spatiale de la technique permettra de caractériser le rôle des hétérogénéités (défauts ou désordre d’alliage) sur les processus de pertes.
Etude expérimentale des couches limites en convection turbulente par spectroscopie d'ondes multi-diffusées.
La convection turbulente est un des principaux moteurs des écoulements géophysiques et astrophysiques et est donc un élément clef de la modélisation du climat. Elle intervient aussi dans de nombreux écoulements industriels. L'efficacité du transport est souvent limitée par des couches limites dont la nature et les transitions en fonction des paramètres de contrôle sont mal connues.
Le but de cette thèse sera de mettre en place d’une expérience de convection pour sonder le taux de dissipation dans les couches limites dans le régime turbulent grâce à une technique innovante développée dans l’équipe : la spectroscopie d’ondes multi-diffusées.
Supraconductivité topologique et surface de Fermi dans les supraconducteurs à spin triplet
La supraconductivité topologique est devenue un sujet de recherche intense en raison de son potentiel pour des avancées majeures dans le domaine de l'information quantique. Les systèmes massifs représentent une possibilité prometteuse, avec des candidats principalement trouvés parmi les supraconducteurs non conventionnels, qui sont également des systèmes d'électrons fortement corrélés. À ce jour, seuls quelques composés candidats pour la supraconductivité topologique de volume existent, et ils sont principalement des supraconducteurs lourds à base d'uranium. L'UTe2 est l'un des candidats les plus prometteurs. Les propriétés topologiques des supraconducteurs dépendent crucialement de la topologie de la surface de Fermi.
Dans ce projet, nous souhaitons mettre en place une nouvelle technique (pour notre équipe) reposant sur un circuit oscillateur à diode tunnel. Cette technique est très sensible aux oscillations quantiques et est bien adaptée aux études sous champs magnétiques élevés et sous haute pression. Les premières expériences se concentrent sur le nouveau supraconducteur UTe2, dont la surface de Fermi n'est que partiellement connue. Des études ultérieures réviseront les propriétés topologiques des supraconducteurs ferromagnétiques UCoGe et URhGe.
Corrosion sous contrainte du verre : régions de vitesses élevées de propagation de fissure sous critique
Les verres d’oxydes sont utilisés dans un grande variété d’applications industrielles en raison de leurs multiples propriétés avantageuses : transparence optique, bonnes propriétés mécaniques et thermiques, durabilité chimique, biocompatibilité et bioactivité. Cependant, un inconvénient majeur de ces verres est leur fragilité. La fracture dynamique du verre (vitesse de propagation de fissure ~km/s, comme dans le cas d’un verre tombant par terre et se brisant) en est un exemple bien connu. Il existe également un autre mode de fracture prépondérant et plus lent (10e-11 à 10e2 m/s). La vitesse de propagation de ces fissures sous-critiques est pilotée par la contrainte locale ressentie en pointe de fissure, appelée facteur d’intensité de contraintes et dépend des conditions environnementales, incluant l’humidité de l’air et la température.
Actuellement, notre dispositif expérimental permet de suivre la position du front de fissure au cours du temps grâce à un microscope tubulaire doté d’une caméra. Le traitement des images acquises permet de déterminer la vitesse du front de fissure et révèle la limite environnementale et la région I. Cependant, capturer les régions II et III n'est pas possible avec le dispositif actuel. Plusieurs raisons concourent à cette limitation : la vitesse élevée du front de fissure (10e-4 to 1500 m/s), la taille de l'échantillon (5×5×25 mm^3), la vitesse d’acquisition des caméras, etc.
Notre équipe a utilisé la technique de la chute de potentiel pour évaluer la vitesse du front de fissure lorsque v > 10e-4 m/s dans le PMMA. Cette méthode consiste à déposer une série de bandes conductrices parallèles à la surface d’un échantillon et d’utiliser un oscilloscope (haute fréquence) pour identifier quand le front de fissure sectionne les bandes conductrices ce qui conduit à un saut dans la résistance électrique. Nous souhaitons maintenant adapter cette technique aux échantillons DCDC de verres d'oxyde. L'objectif de la thèse est de développer et d’appliquer cette technique de chute de potentiel aux échantillons DCDC. Le défi est d’accéder aux variations fines de la vitesse de fissuration avec des résolutions en espaces et en temps de l’ordre de 50 microns et de la nanoseconde. L'étudiant en thèse participera à toutes les étapes de la réalisation des expériences : conception et dépôt des bandes conductrices parallèles sur la surface de l’échantillon en verre en utilisant une salle blanche, réalisation d'expériences de corrosion sous contraintes (CSC) dans les Régions II et III, et analyse des données acquises pendant l'expérience de CSC.
Développement de supports solides poreux siliceux pour la sorption d’actinides – Comportement sous irradiation
L’objectif de ce projet de recherche est d’étudier la densification d’une structure mésoporeuse sous l’effet des dommages d’irradiation produit par la présence d’un actinide (238Pu) dans la structure poreuse. Pour cela, des matériaux siliceux à base de silices mésoporeuses modifiées par l’ajout d’éléments d’addition (B, Al…) seront mis en œuvre. L’ajout de ces éléments aura pour but de fragiliser la structure mésoporeuse afin de favoriser sa densification. Les caractéristiques de la structure mésoporeuse (diamètre des pores, taille des murs, symétrie du réseau poreux) seront d’autres paramètres de l’étude. Ces matériaux seront fonctionnalisés par des ligands de type phosphonate pour l’adsorption d’actinides : le thorium comme simulant dans une étape préliminaire, puis le plutonium. La dernière partie de ce travail qui se poursuivra au-delà de la thèse, consistera à étudier par différentes techniques (SAXS, BET, microscopie…) l’évolution de la structure mésoporeuse sous l’effet des dommages d’irradiation au cours du vieillissement du matériau. Ce travail de recherche fondamental pourrait avoir des retombées dans le domaine de matériaux de conditionnement des déchets nucléaires : vieillissement des gels à la surface des verres nucléaires, matériau support pour la décontamination des effluents radioactifs. Une partie du travail sera réalisée dans l’installation Atalante du CEA Marcoule.
Modèle de microémulsion : Vers la prédiction des procédés d’extraction liquide-liquide
Cette thèse de modélisation multi-échelle a pour objectif de développer des approches théoriques et des outils numériques innovants pour révolutionner les procédés d’extraction des métaux stratégiques, comme l’extraction liquide-liquide dont les mécanismes sous-jacents restent encore mal compris. Pour répondre à ces enjeux, les phases solvants seront représentées par des microémulsions, grâce à une synergie d’approches de modélisations mésoscopiques et moléculaires.
Le volet mésoscopique reposera sur le développement d’un code basé sur la théorie des microémulsions utilisant une base d’ondelettes aléatoires. Ce code permettra de caractériser les propriétés structurales et thermodynamiques des solutions. L’approche moléculaire s’appuiera sur des simulations de dynamique moléculaire classique pour évaluer les propriétés de courbure des extractants nécessaires au passage entre les deux échelles.
Le nouveau code de calcul performant intégrera potentiellement des techniques d’intelligence artificielle pour accélérer la minimisation de l’énergie libre du système, tout en prenant en compte l’ensemble des espèces chimiques présentes avec un minimum de paramètres. Cela ouvrira la voie à de nouvelles pistes de recherche, notamment à travers la prédiction de la spéciation et le calcul des instabilités thermodynamiques dans les diagrammes de phase ternaires, permettant ainsi d’identifier des conditions expérimentales encore inexplorées.
Cette thèse, menée au Laboratoire de Modélisation Mésoscopique et Chimie Théorique à l’Institut de Chimie Séparative de Marcoule, aura des applications dans le domaine du recyclage, mais également dans le domaine des nanosciences, élargissant ainsi l’impact de ces travaux.
Le/La doctorant(e), de formation initiale en chimie-physique, chimie théorique ou physique, et ayant un fort intérêt pour la programmation, sera encouragé(e) à valoriser ses résultats scientifiques par des publications et des communications lors de conférences nationales et internationales. A l’issue de la thèse, le/la candidat(e) aura acquis un large éventail de compétences en modélisation et en chimie-physique, lui offrant de nombreuses opportunités professionnelles, tant en recherche académique qu’en R&D industrielle.
Etude la séparation des isotopes du lithium par laser
Cette thèse concerne l’étude de différentes voies de séparation des isotopes du lithium par laser. Les travaux seront menés à la fois théoriquement et expérimentalement. L’objectif est de déterminer une voie optimale ainsi que ses performances. On vise à obtenir un facteur de séparation isotopique supérieur à 100, alors que les procédés actuels possèdent des facteurs tout juste supérieurs à 1.
Méthodologie et déroulement de la thèse : La thèse se déclinera en 4 axes de recherches.
1-Les schémas de photo-ionisation déjà publiés seront tout d’abord analysés et de nouvelles séquences prometteuses seront recherchées. Ensuite il s’agira de recueillir les données spectroscopiques correspondantes, les données sur les lasers concernés et celles sur le régime d’interaction. Elles devront être analysées, compilées et assemblées. Ceci servira de base pour construire un modèle décrivant l’interaction laser-atome.
2-Des schémas de photo-ionisation prometteurs seront testés expérimentalement et les performances seront mesurées. Un banc d’essai (comprenant des moyens de vaporisation du lithium, des lasers et un spectromètre de masse à temps de vol) sera assemblé puis utilisé à cette fin.
3-Le rendement de séparation sera modélisé, avec un modèle de type mécanique quantique via l’évolution temporelle de la matrice densité par exemple, et l’efficacité en fonction des lasers disponibles sera ensuite examinée.
4-Les résultats expérimentaux seront comparés à ceux obtenus par modélisation afin de déterminer les performances optimales à attendre et leur extrapolation.
Les travaux pourront être publiés dans des conférences et des revues scientifiques après accord du CEA.