Influence du dopage au chrome du combustible UO2 sur la spéciation des produits de fission en conditions accidentelles
Le développement des réacteurs nucléaires s’inscrit dans une démarche d’amélioration de la sûreté, avec par exemple le déploiement de combustibles nucléaires à propriétés améliorées vis-à-vis de leur comportement en conditions accidentelles : les combustibles nucléaires dits E-ATF (Enhanced Accident Tolerant Fuel). Parmi les combustibles E-ATF envisagés, le combustible UO2 dopé avec Cr2O3 est développé par l’opérateur industriel FRAMATOME. En revanche, très peu de données existent sur le comportement des produits de fission d’un combustible dopé Cr en conditions accidentelles.
La thèse propose de mettre au point un procédé de synthèse d’un combustible UO2 dopé Cr simulant le combustible irradié pour étudier le comportement des éléments (Cr et produits de fission) en température et sous différentes pressions partielles d’oxygène. La méthodologie repose sur une approche expérimentale couplant synthèse de matériaux modèles et caractérisation chimique approfondie, complétée par une approche théorique (calculs thermodynamiques) permettant de dimensionner les séquences thermiques et conforter les mécanismes réactionnels proposés.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
Le doctorant aura l’opportunité de se former à des techniques pointues de caractérisation des sciences des matériaux céramiques, d’accéder à des expériences sur grands instruments (synchrotron) et de participer à des échanges avec le monde académique (CNRS, Universités, JRC). Il pourra valoriser ses travaux à travers des publications et des participations à congrès.
A l’issue de cette thèse, le doctorant aura acquis des compétences en science des matériaux et en caractérisation du solide qu’il pourra mettre à profit dans différents domaines des matériaux, ainsi qu’une expérience dans le milieu nucléaire d’intérêt pour l’industrie nucléaire.
Développement d’un système miniaturisé et automatisé pour l’analyse isotopique d’échantillons nucléaires
La miniaturisation, qui consiste à réduire les dimensions d’un objet, d’une méthode ou d’une fonction tout en conservant ou en améliorant ses performances par rapport à une échelle classique, a un intérêt spécifique dans le domaine de la chimie analytique pour le nucléaire. En effet, une part importante des analyses sont effectuées dans des boîtes à gants où la miniaturisation et l’automatisation sont une réponse directe au besoin de diminution des doses et des volumes d’effluents. La thèse proposée consiste ainsi à développer un système miniaturisé et automatisé, en boîte à gants, pour réaliser des analyses isotopiques de haute précision. Ce système sera basé sur l’utilisation de l’électrophorèse capillaire (CE) en couplage avec un ICP-MS à multicollection (MC-ICP-MS) nucléarisé. Durant la thèse, l’étudiant(e) utilisera des machines de micro-usinage et d’impression 3D pour développer un système aisément manipulable qui sera ensuite couplé à des MC-ICP-MS de dernière génération du laboratoire. Le travail consistera à concevoir le montage automatisé et à l’intégrer en boîte à gants, puis à poursuivre le développement de la méthode de séparation par CE pour la réalisation d’analyses isotopiques et élémentaires sur des échantillons nucléaires. Cette thèse sera réalisée dans un laboratoire reconnu internationalement pour ses compétences en analyses isotopiques de haute précision. Un cursus en chimie analytique est requis et un stage Master 2 est proposé en amont.
Comportement redox du technetium dans le procédé innovant PUMAS: étude cinétique et spéciation
Le technétium (Tc), élément radioactif artificiel, constitue environ 6 % des produits de fission dans le combustible nucléaire usé. Le procédé PUREX permet de séparer l’uranium et le plutonium des autres produits de fission. Cependant, le Tc est co-extrait avec ces actinides, nécessitant une désextraction supplémentaire. Lors de cette étape, un agent stabilisant, le nitrate d’hydrazinium (NH), est utilisé, mais en raison de sa toxicité et de sa classification CMR, il est en cours de remplacement par des alternatives moins toxiques, telles que les oximes. Ces dernières, bien que prometteuses, présentent une cinétique de désextraction plus lente que le NH. Dans le cadre du procédé PUMAS, cette thèse vise à comprendre les mécanismes redox complexes du Tc et les différences de cinétique observées entre les oximes et le NH. Le doctorant étudiera les formes réduites du Tc et analysera les cinétiques de réduction en présence d’U(IV) et d’agents anti-nitreux. Il développera une méthodologie pour caractériser les états d'oxydation du Tc et déterminera les constantes de réaction en fonction de la température et de la concentration en réactifs.
Le candidat travaillera en étroite collaboration avec l’équipe encadrante afin de développer son autonomie, sa capacité d’adaptation, ainsi que son aptitude à proposer des idées innovantes. À l'issue de ce parcours, le candidat aura non seulement acquis des compétences techniques de haut niveau, mais aussi développé des aptitudes en gestion de projet, en travail collaboratif, ainsi qu’en rédaction et communication scientifique. Ces compétences lui offriront de solides perspectives pour une carrière dans la recherche académique ou au sein de l'industrie.
Simulation par Dynamique Moléculaire du Plutonium(IV) en Solution
Avec la relance du nucléaire en France, le CEA joue un rôle clé dans l’industrie nucléaire de demain. Dans ce contexte, ingénieurs et chercheurs sont mobilisés pour répondre aux besoins croissants de cette industrie. Le plutonium est un élément clé dans le cycle du combustible nucléaire. L'acquisition de données moléculaires est cruciale pour optimiser et rationaliser les mécanismes ayant lieu lors des séparations de cet élément.
Le plutonium(IV) est l’une des formes cationiques les plus courantes dans le cycle du combustible nucléaire. Son étude par chimie théorique présente des difficultés tant sur la modélisation ab initio (orbitales du bloc f occupées) que sur les simulations atomistiques classiques. Dans la simulation par dynamique moléculaire classique, les modèles nécessitent impérativement l’ajout de l’effet de polarisation, et parfois même de l’ajout du transfert de charge afin de reproduire correctement le comportement du système. Ceci résulte en une absence quasi-totale, dans la littérature scientifique, des simulations classiques contenant du plutonium (IV). De plus, la spéciation de ce cation étant sensible à l’acidité dans le milieu, cette dernière doit être prise en compte dans les simulations, rajoutant ainsi une difficulté supplémentaire.
Cette thèse vise à simuler, par dynamique moléculaire (classique et ab initio), des solutions contenant du plutonium, tout en tenant compte de l'effet de l'acidité. Le/la doctorant.e sera confronté.e à deux problématiques principales : le choix ou développement d’un champ de force pour le cation Pu4+, et, la conception d’une méthode permettant d’inclure l’acidité dans les solutions. Une étape cruciale de la démarche consistera à confronter les résultats aux données expérimentales disponibles afin de conclure sur la capacité des modèles à reproduire des données expérimentales. Cette thèse se déroulera au sein d'un laboratoire pluridisciplinaire, combinant chimie expérimentale et modélisation théorique, tout en menant des recherches à la fois appliquées et fondamentales.
Impact de la nanostructure du solvant sur la précipitation de l'uranium : approche physico-chimique pour le recyclage nucléaire
Le recyclage des combustibles nucléaires est un enjeu majeur pour garantir un avenir énergétique durable. Le CEA, en partenariat avec Orano et EDF, développe depuis plusieurs années un nouveau procédé de séparation des combustibles riches en plutonium. L’objectif est de remplacer le système actuel TBP/TPH par un procédé sans rédox, plus adapté au retraitement du MOX ou des réacteurs à neutrons rapides (RNR).
Dans ce cadre, cette thèse propose d’étudier le comportement des solvants organiques chargés en uranium pour comprendre et prévenir la formation de précipités, un phénomène qui pourrait impacter la performance des procédés industriels. L’approche scientifique se focalisera sur l’échelle supramoléculaire et sur une comparaison de différents monoamides pour évaluer l’effet des chaînes alkyles sur les propriétés physicochimiques et la nanostructure des solutions.
Le candidat devra avoir un niveau Master 2 en chimie, physicochimie ou matériaux. Des compétences en chimie analytique, spectroscopies (RMN, FTIR), et techniques de diffusion (SANS, SAXS) seront fortement valorisées. En rejoignant ce projet, intégrerez les laboratoires de pointe du CEA (ICSM/LTSM et DMRC/SPTC/LILA), dotés d'équipements de classe mondiale pour les études sur des échantillons radioactifs. Vous bénéficierez d'un encadrement multidisciplinaire, incluant la possibilité de collaborations internationales. Cette thèse représente un défi scientifique majeur avec des applications industrielles directes, vous offrant une expérience précieuse dans le domaine de la séparation et des procédés de l’industrie nucléaire.
Matériaux topologiques et altermagnétiques: quelle puissance peut-on tirer de l’effet Hall anomal ?
L’argument majeur pour favoriser le développement de l’électronique de spin ainsi que des matériaux topologiques est la faible puissance dissipée lorsque l’on utilise les degrés de liberté de spin et les configurations transverses de type configuration de Hall. En effet, dans le cas d’une phase topologique, on s’attend à ce que le champ magnétique effectif généré ne dissipe pas. Une telle assertion doit cependant faire l’objet d’une description théorique dans le cadre d’un dispositifs électronique réaliste en régime stationnaire. Le but de la thèse est de déterminer la puissance utile de ces dispositifs, dans un étude à la fois expérimentale et théorique.
Dans ce contexte, la définition de la puissance utile est un problème ouvert. En effet, la thermodynamique de ce type de systèmes hors équilibre met en jeu des effets croisés entre les degrés de liberté des porteurs de charges électriques, ceux du spin de ces porteurs, ainsi que ceux de l’aimantation. Les effets croisés hors équilibre sont décrits de façon très générale par les fameuses relations de réciprocité d’Onsager. Nous avons développé une méthode variationnelle permettant d’établir l’état stationnaire d’une barre de Hall et la puissance dissipée dans un circuit de charge, en fonction de la résistance de charge et de l’angle de Hall. Un résultat inattendu prédit l’existence d’un maximum (« maximum power transfer theorem »). Des mesures préliminaires sur la base de l’effet Hall anomal ont récemment validé la prédiction. Cette confirmation expérimentale nous permet d’établir un projet de thèse qui a pour ambition de reproduire les mesures sur un vaste ensemble de matériaux (métaux, semiconducteurs, oxides) et en particulier des matériaux topologiques magnétiques, dit altermagnétiques.
En outre, une étude en résonance ferromagnétique (dit de pompage de spin) mettra en jeu des effets du type thermoélectriques, dont les propriétés dissipatives, mesurées sur un circuit de charge adjacent, restent à déterminer.
Dégradation radiolytique des N,N-dialkyl amides : Impact sur la spéciation des complexes
Les N,N-dialkylamides (ou monoamides) sont des molécules extractantes prometteuses pour le développement de nouveaux procédés de traitement des combustibles nucléaires usés. Lors de la mise en œuvre de ces procédés d’extraction liquide-liquide, ces molécules sont soumises aux phénomènes de radiolyse induits par la présence des rayonnements ionisants émis par les radioéléments. Cela entraine la formation d’espèces radicalaires ou moléculaires susceptibles de provoquer des ruptures ou modifications de liaisons chimiques conduisant à la formation de nouveaux composés. Ces changements dans la composition des solutions peuvent altérer les propriétés extractantes et provoquer des dysfonctionnements, notamment en termes d’efficacité et de sélectivité.
Cette thèse a pour but d’étudier l’impact de la radiolyse sur la spéciation des complexes actinides-ligands en solution afin d’améliorer la compréhension des phénomènes observés sous l’effet des rayonnements ionisants.
Nous proposons ici une approche combinant des études expérimentales (techniques chromatographiques, spectrométrie de masse, spectroscopies UV-visible, IR, RMN,…) et des calculs de chimie théorique (énergie de dissociation des liaisons, identification des sites probable d’attaques radicalaires, stabilité des complexes métal-ligands,…) pour décrire la spéciation moléculaire des espèces en solution, à la fois pour les composés organiques et pour les complexes formés entre ces composés et les cations métalliques d’intérêt. La sphère de coordination des cations métalliques engagés dans les complexes sera décrite le plus finement possible pour identifier les groupements fonctionnels impliqués dans la complexation et évaluer les modifications induites par l’effet des rayonnements.
Modélisation du flux critique à l’aide des méthodes de Boltzmann sur réseau : application aux dispositifs expérimentaux du RJH
Les méthodes LBM (Lattice Boltzmann Methods) sont des techniques numériques utilisées pour simuler des phénomènes de transport dans des systèmes complexes. Elles permettent de modéliser le comportement des fluides en termes de particules qui se déplacent sur une grille discrète (un "réseau" ou lattice). Contrairement aux méthodes classiques, qui résolvent directement les équations différentielles des fluides, les méthodes LBM simulent l'évolution des fonctions de distribution des particules de fluide dans un espace discret, en utilisant des règles de propagation et de collision.
Le choix du réseau dans les méthodes LBM est une étape cruciale, car il affecte directement la précision, l'efficacité et la stabilité des simulations. Le réseau détermine la manière dont les particules de fluide interagiront et se déplaceront dans l'espace, ainsi que la façon dont la discrétisation de l'espace et du temps est effectuée.
Les méthodes LBM présentent un parallélisme naturel, car les calculs à chaque point de la grille sont relativement indépendants. Bien que les méthodes classiques de CFD, basées sur la résolution des équations de Navier-Stokes, puissent aussi être parallélisées, les termes non linéaires peuvent rendre le parallélisme plus difficile à gérer, en particulier pour les modèles impliquant des écoulements turbulents ou des maillages irréguliers. Les méthodes LBM permettent donc, à moindre coût, de capturer des phénomènes complexes. Des travaux récents ont notamment montré qu'il était possible, avec les LBM, de retrouver la courbe de refroidissement de Nukiyama (ébullition en vase) et, ainsi, de calculer avec précision le flux critique. Ce flux correspond à une ébullition en masse, appelée crise d’ébullition, qui se traduit par une dégradation soudaine du transfert thermique.
Le flux critique représente un enjeu crucial pour le Réacteur Jules Horowitz, car les dispositifs expérimentaux (DEX) sont refroidis par de l'eau en convection naturelle ou forcée. Ainsi, afin de garantir le bon refroidissement des DEX et la sûreté du réacteur, il convient de s'assurer que, sur la gamme de paramètres étudiés, le flux critique ne soit pas atteint. Il doit donc être déterminé avec précision.
L'étudiant sera amené, dans un premier temps, à définir un réseau pour appliquer les méthodes LBM sur un dispositif du RJH en convection naturelle. Il consolidera les résultats obtenus en les comparant aux données disponibles. Enfin, des calculs exploratoires en convection forcée (régime laminaire à turbulent) seront menés.
Étude des transitoires de cristallisation des oxalates d’actinides
Les besoins croissants en énergie et l’urgence climatique nécessitent une transition rapide vers une énergie totalement décarbonée, mixant énergies renouvelables et nucléaire durable. Dans ce contexte, la précipitation du plutonium et de l’uranium sous forme d’oxalate constitue une étape clef du procédé industriel de recyclage du combustible usé. La compréhension fine des mécanismes de cristallisation de ces oxalates constitue ainsi un enjeu fort pour un meilleur pilotage de ces opérations.
Or, il est désormais largement admis que les ions en solution s’assemblent en cristaux via une série d’états transitoires non cristallins, ce qui contredit fondamentalement toutes les théories classiques de nucléation utilisées dans les modèles de précipitation. En particulier, nous avons démontré ces dernières années que les cristaux d'oxalate de terres rares (Eu, Nd, Ce, Tb), certains utilisés pour simuler expérimentalement le recyclage de l'uranium et du plutonium, se forment via des nanogouttelettes liquides riches en réactifs qui se séparent du solvant aqueux. Ce comportement modifie la vision jusqu’à présent retenue pour la précipitation de ces oxalates et amène à s’interroger sur le comportement des oxalates d’actinide.
Le but de cette thèse est de confirmer ou infirmer que les gouttelettes minérales transitoires se forment également lors de la formation des oxalates d'uranium et de plutonium, et de déterminer si les transitoires de la cristallisation impactent les modèles de précipitation utilisés pour calibrer le procédé de recyclage du combustible nucléaire. Cette étude aura un impact non seulement sur les processus de précipitation utilisés dans le recyclage, mais fera également avancer une question fondamentale sur la cristallisation « non classique » débattue depuis longtemps.
Mobilité des dislocations dans les alliages à haute entropie cubiques centrés
Les alliages à haute entropie sont des solutions solides monophasées multi-composants, tous présents en forte concentration. Cette classe de matériaux présente des améliorations significatives en termes de propriétés mécaniques par rapport aux alliages "classiques", et en particulier leur résistance élevée à haute température. Il est communément admis que les bonnes performances mécaniques proviennent des interactions des dislocations avec les éléments d'alliage, et qu’à haute température les impuretés ou dopants de nature interstitielle, comme l’oxygène, le carbone ou l’azote, jouent un rôle prépondérant. L’étude de la plasticité des alliages concentrés de structure cristalline cubique centrée dans le domaine des hautes températures constitue donc l’objectif de cette thèse. Les enjeux technologiques associés sont importants, ces alliages étant des matériaux de structure prometteurs, notamment pour les applications nucléaires où des températures de fonctionnement au-delà de l’ambiante sont visées.
Cette thèse s’attachera à comprendre et modéliser les mécanismes physiques contrôlant la tenue mécanique de ces alliages à haute température, en considérant différents alliages concentrés de complexité croissante, et en s’appuyant sur des outils de simulations atomiques, en particulier des codes de structure électronique ab initio. Nous nous focaliserons d’abord sur l’alliage binaire MoNb avant d’étendre aux alliages ternaires MoNbTi et MoNbTa, et d’étudier l’impact des impuretés d’oxygène sur le comportement plastique de ces alliages. Nous modéliserons les coeurs de dislocation et analyserons leur interaction avec les éléments substitutionnels et interstitiels afin de déterminer les barrières d’énergie contrôlant leur mobilité. Sur la base de ces résultats ab initio, nous développerons des modèles de durcissement permettant notamment de prédire la limite élastique en fonction de la température et de la composition de l’alliage.
Ce travail s’effectuera dans le cadre du projet DisMecHTRA financé par l’Agence Nationale de la Recherche, ce qui permettra en particulier de confronter nos modèles de durcissement aux données issues des expériences prévues dans le projet (essais mécaniques et microscopie électronique à transmission) et qui seront réalisées par les autres partenaires (CNRS Toulouse et Thiais). La thèse, hébergée au CEA Saclay, sera co-encadrée par une équipe du CEA Saclay et de MatéIS (CNRS, Lyon).