METHODES DE SYNTHESE D’HETEROCYCLES AZOTES FONCTIONNALISES ET APPLICATION AUX MOLECULES ENERGETIQUES
L’objectif de la thèse est de mettre au point de nouvelles méthodes de synthèse et/ou de fonctionnalisation permettant d’obtenir des molécules hétérocycliques fonctionnalisées. Ces molécules sont basées sur des cycles aromatiques azotés à 5 ou 6 atomes (diazines, triazines, triazoles, tétrazoles…). Les structures visées permettent d’envisager de fortes densités et enthalpie de formation, tout en conservant une faible sensibilité aux agressions (thermiques, mécaniques…). Elles trouvent des applications dans le domaine énergétique, notamment la propulsion, les explosifs et les générateurs de gaz (airbags). De plus, ces composés hétérocycliques ainsi que les intermédiaires sont également structuralement proches de familles de produits biologiquement actifs et/ou susceptible de présenter des propriétés de fluorescence, comme l’a déjà montré une thèse précédente au laboratoire.
Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique
Depuis la fin de la seconde guerre mondiale, le recours aux plastiques pétrosourcés a favorisé l’émergence d’un modèle de consommations axé sur l’utilisation de produits jetables et la production mondiale de plastiques atteint désormais468 millions de tonnes par an. Ces plastiques, non biodégradables, sont à l’origine de nombreuses pollutions environnementales. Depuis les années 50, seulement 9 % de ces déchets ont fait l'objet d'un processus de recyclage. La majorité a été incinérée ou stockée en décharge. Dans le contexte actuel de cette économie linéaire, les enjeux sanitaires, climatiques et sociétaux rendent indispensable une transition vers une approche circulaire des matières. Cette évolution implique le développement de voies de recyclage à la fois efficaces et robustes. Alors que les voies de recyclage actuelles les plus répandues sont principalement des procédés mécaniques qui s’appliquent à des gisements particuliers de déchets, comme les bouteilles en plastique PET, le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. Ces procédés chimiques innovants permettent de récupérer la matière carbonée des plastiques pour en produire de nouveaux.
Le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux seront développés, et nous chercherons à comprendre leur mode de fonctionnement.
Croissance et caractérisation de l’AlScN : un nouveau matériau prometteur pour les dispositifs piézoélectriques et ferroélectriques
Les semi-conducteurs III-nitrures — GaN, AlN et InN — ont révolutionné le marché de l’éclairage et pénètrent rapidement le secteur de l’électronique de puissance. Actuellement, de nouveaux composés nitrures sont explorés dans la recherche de nouvelles fonctionnalités. Dans ce contexte, le nitrure d’aluminium et de scandium (AlScN) s’est imposé comme un nouveau membre particulièrement prometteur de la famille des nitrures. L’incorporation de scandium dans l’AlN conduit à :
* Des constantes piézoélectriques accrues : ce qui rend l’AlScN très attractif pour la fabrication de générateurs piézoélectriques et de filtres SAW/BAW à haute fréquence.
* Une polarisation spontanée augmentée : cette polarisation renforcée peut être exploitée dans la conception de transistors à haute mobilité électronique (HEMTs) présentant une densité de charge très élevée dans le canal.
* La ferroélectricité : la découverte récente (2019) de propriétés ferroélectriques ouvre la voie au développement de nouvelles mémoires non volatiles.
Au cours des cinq dernières années, l’AlScN est devenu un sujet majeur de recherche, présentant de nombreuses questions ouvertes et de passionnantes perspectives à explorer.
Cette thèse de doctorat portera sur l’étude de la croissance et des propriétés de l’AlScN et du GaScN synthétisés par épitaxie par jets moléculaires (MBE). Le doctorant sera formé à l’utilisation d’un système MBE pour la synthèse des semi-conducteurs III-nitrures ainsi qu’à la caractérisation structurale des matériaux par microscopie à force atomique (AFM) et diffraction des rayons X (XRD). La variation des propriétés de polarisation du matériau sera étudiée par l’analyse de la photoluminescence de structures à puits quantiques. Enfin, le doctorant sera formé à l’utilisation de logiciels de simulation pour modéliser la structure électronique des échantillons, afin de faciliter l’interprétation des résultats optiques.
Électrodes positives composites dans les batteries à l’état solide : influence du procédé de fabrication sur les performances électrochimiques
Le développement de batteries tout solide (SSBs) à haute densité énergétique et à faible coût est essentiel pour l’adoption à grande échelle des technologies de stockage d’énergie de nouvelle génération. Parmi les différents candidats pour la cathode, le LiFePO4 (LFP) et le LiFe1??Mn?PO4 (LFMP) offrent des avantages en termes de sécurité et de coût, mais présentent des tensions de fonctionnement faibles et une cinétique limitée comparées aux oxydes lamellaires riches en nickel tels que le LiNi0.85Mn0.05Co0.1O2 (NMC85). Afin d’équilibrer densité énergétique, puissance et stabilité, ce projet de thèse vise à développer des cathodes composites combinant LFMP et NMC85 dans des proportions optimisées pour des configurations tout solide utilisant des électrolytes à base de soufre (Li6PS5Cl). Nous examinerons l’influence des méthodes de fabrication — notamment la préparation des électrodes faites à partir d’encres et l’optimisation du couple liant–solvant — sur les performances électrochimiques et structurales obtenues. Des caractérisations approfondies operando et in situ (XRD, Raman et RMN) seront menées afin d’élucider la diffusion du lithium, les mécanismes de transition de phase et le comportement rédox au sein des systèmes composites. La spectroscopie d’impédance électrochimique (EIS) et des méthodes de titration permettront de quantifier la cinétique du lithium à différents états de charge. En corrélant les conditions de fabrication, la microstructure et le comportement électrochimique, ce projet vise à identifier les compositions de cathodes et les stratégies de fabrication optimales pour des SSBs performantes et industrialisables. Au global, le projet vise à fournir une compréhension complète des relations structure–propriété dans les cathodes composites, ouvrant la voie à des batteries tout solide pratiques offrant une sécurité, une stabilité et une rentabilité accrues.
Développement de biocapteurs interférométriques photo-imprimés sur fibres optiques multicoeurs pour le diagnostic moléculaire
Les fibres optiques sont des dispositifs peu invasifs couramment utilisés en médecine pour l'imagerie tissulaire in vivo par endoscopie. Cependant, à l'heure actuelle, elles ne fournissent que des images et aucune information moléculaire sur les tissus observés. La thèse proposée s'inscrit dans un projet visant à conférer aux fibres optiques la capacité d'effectuer des reconnaissances moléculaires afin de développer des biocapteurs innovants capables d'effectuer une analyse moléculaire en temps réel, à distance, in situ et multiplexée. Un tel outil pourrait apporter des progrès importants dans le domaine médical, et plus particulièrement dans l'étude des pathologies cérébrales pour lesquelles la connaissance de l'environnement tumoral, difficilement accessible par des biopsies classiques, est primordiale.
L'approche proposée repose sur l'impression par polymérisation à 2-photons de structures interférométriques à l'extrémité de chacun des cœurs d'un assemblage multifibre. Le principe de détection repose sur les interférences se produisant dans ces structures et leur modification par l'adsorption de molécules biologiques. Chacune des fibres de l’assemblage agira comme un capteur individuel et la mesure de l'intensité de la lumière rétro-réfléchie à l'extrémité fonctionnalisée permettra de rendre compte des interactions biologiques se produisant sur cette surface. Grâce à la modélisation du phénomène d’interférence, nous avons déterminé des paramètres pour optimiser la forme et la sensibilité des structures interférométriques (PTC InSiBio 2024-2025). Ces résultats ont permis l'impression et la caractérisation de la sensibilité de structures interférométriques sur mono-fibres. Les objectifs de la thèse sont de poursuivre cette caractérisation optique sur de nouveaux échantillons et de développer des méthodes de fonctionnalisation photo-chimiques originales afin de greffer plusieurs sondes biologiques à la surface des assemblages de fibres. Cette multi-fonctionnalisation permettra de réaliser une détection multiplexée, essentielle pour envisager une application médicale future. Selon l'avancement de la thèse, les biocapteurs seront validés au travers de la détection de cibles biologiques dans des milieux de plus en plus complexes pouvant aller jusqu'à un modèle de tissu cérébral.
Effets de Friction couplés de la mer de Dirac et du champ électromagnétique du vide sur des atomes en mouvement
Les fluctuations quantiques induisent des forces macroscopiques conservatrices telles que l'effet Casimir. Elles pourraient également provoquer des forces dissipatives, appelées friction du vide (ou friction quantique). Jusqu'à présent, cet effet de friction a été calculé en considérant uniquement les fluctuations électromagnétiques, c'est-à-dire sans tenir compte de la mer de Dirac. Ce projet est consacré à l'extension de nos recherches dans cette direction : les électrons, en tant que principaux contributeurs de l'interaction matière-champ, interagissent également avec les paires virtuelles électron-positron dans le vide quantique. Quelle part de la friction quantique, à température nulle ou finie du vide, pourrait être due à ce type d'interaction ? Une première étape consistera à adapter le cadre semi-classique actuel pour inclure la polarisation du vide et la création de paires. Ce faisant, on rencontrera des cut-offs de fréquence haute finie, traditionnellement liées à la création de paires virtuelles ; on déterminera ainsi une composante de friction liée au cut-off des intégrales de Fourier. Sur cette voie de recherche, on veillera à maintenir la cohérence mathématique de l'ensemble du cadre. Un objectif à plus long terme reste un traitement relativiste quantique complet et cohérent de la friction quantique au niveau atomique.
Modélisation d'une diode magnonique basée sur la non-réciprocité des ondes de spin dans les nanofils et les nanotubes
Ce projet de doctorat porte sur le phénomène émergent de non-réciprocité des ondes de spin dans les fils magnétiques cylindriques, de leurs propriétés fondamentales jusqu'à leur exploitation pour la réalisation de dispositifs à base de diodes magnoniques. Des expériences préliminaires menées dans notre laboratoire SPINTEC sur des fils cylindriques, avec une aimantation axiale dans le cœur et azimutale à la surface du fil, ont révélé un effet asymétrique géant (courbes de dispersion asymétriques avec des vitesses et des périodes différentes pour les ondes se propageant vers la gauche et vers la droite), créant même une bande interdite pour une direction de mouvement donnée, liée à la circulation de la magnétisation (vers la droite ou vers la gauche). Cette situation particulière n'a pas encore été décrite théoriquement ni modélisée, ce qui constitue un terrain inexploré et prometteur pour ce projet de doctorat. Pour modéliser la propagation des ondes de spin et dériver les courbes de dispersion pour un matériau donné, nous prévoyons d'utiliser divers outils numériques : notre logiciel micromagnétique 3D par éléments finis feeLLGood et le logiciel 2D open source TetraX dédié aux calculs de modes propres et spectres associés. Ce travail sera mené en étroite collaboration avec des expérimentateurs, dans le but à la fois d'expliquer les résultats expérimentaux et d'orienter les futures expériences et les axes de recherche.
Cartographie des potentiels de surface des oxydes métalliques activées catalytiquement utilisés comme des photoanodes
Lors de la photoélectrolyse d’eau, le transfert de charges à l'interface photoanode/électrolyte est déterminé par l'alignement des bandes d'énergie, à la fois côté électrode et côté électrolyte. Le potentiel de surface de l’électrode joue un rôle majeur sur la courbure finale des bandes et par conséquent sur la séparation des charges à l’interface. Aussi appelé potentiel de surface électrochimique, il varie en fonction de l'environnement (vide, air, eau, etc.). L'objectif de cette thèse est d'aborder la réaction d’oxydation de l’eau (OER) à l'interface photoanode/électrolyte en termes de bandes d'énergie et en particulier du point de vue du potentiel de surface électrochimique. Ainsi, au cours de cette thèse, le doctorant caractérisera les potentiels de surface d'une série de photoanodes (oxydes métallique semiconducteurs activées catalytiquement) en contact avec différents environnements (vide, air à humidité variable, eau) et les corrélera à l'activité photoélectrochimique (PEC). L'activité du doctorant s'articulera autour de quatre axes : i) synthèse de photoanodes par voie chimique ; ii) caractérisation de l'activité photoélectrochimique ; iii) caractérisation par microscopie à force atomique (AFM) corrélée à la microscopie à force de Kelvin (KPFM) ; iv) spectromicroscopies de rayons X synchrotron (STXM, XPEEM) et photoémission à pression ambiante (NAP-XPS). L'étudiant sera accueilli au laboratoire SPEC du CEA-Saclay pendant toute la durée de sa thèse. Ses travaux s'inscrivent dans le cadre d'une collaboration de longue date entre SPEC et SOLEIL.
Analyse multi-modale par résonance magnétique nucléaire in situ des phénomènes électrochimiques dans des prototypes de batteries commerciales
Le développement des technologies de stockage d'énergie électrochimique est impossible sans une compréhension à l'échelle moléculaire des processus tels qu'ils se produisent dans les dispositifs commerciaux pratiques. Certains aspects de la conception des batteries, tels que la composition chimique et l'épaisseur des électrodes, ainsi que la configuration des collecteurs et des languettes de courant, influencent les distributions de densité de courant électronique et ionique et déterminent les limites cinétiques du transport ionique à l'état solide. Ces effets, à leur tour, modulent les performances et la longévité globales des batteries. Pour ces raisons, les résultats des tests de piles boutons conventionnelles ne convergent souvent pas vers des cellules commerciales hautes performances. Les préoccupations de sécurité liées à la forte densité énergétique et aux composants inflammables des batteries constituent un autre sujet crucial pour la conversion des énergies fossiles aux énergies vertes.
La spectroscopie et l'imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l'environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d'IRM à balayage de surface prêtes à l'emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d'un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l'énergie.
Ce projet vise à développer un cadre analytique avancé pour l'analyse in situ de phénomènes fondamentaux tels que le transport d'ions à l'état solide, l'intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l'analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.
Potentialités des liants silico-magnésiens pour le conditionnement de terres contaminées
La contamination des sols par des substances radioactives constitue un enjeu majeur en matière de santé publique et de protection de l’environnement. Parmi les différentes stratégies envisageables pour la gestion de ces sols pollués, l’excavation des matériaux contaminés ouvre la voie à une réutilisation sécurisée du site. Les terres ainsi extraites, lorsqu’elles sont de faible ou moyenne activité à vie courte, doivent être stabilisées avant leur stockage. Dans ce contexte, le procédé de cimentation est apprécié pour son coût modéré, sa simplicité de mise en œuvre et sa capacité à confiner de nombreux polluants. Toutefois, son application aux sols riches en argile gonflante présente deux limites majeures : une mauvaise ouvrabilité du matériau à l’état frais, et une instabilité volumique à l’état durci. Face à ces contraintes, la thèse propose d’évaluer le potentiel des ciments silico-magnésiens comme alternative aux ciments silico-calciques traditionnels. Ces nouveaux liants suscitent à l’heure actuelle un intérêt croissant, notamment pour la construction en terre crue et le développement de matériaux à faible empreinte carbone.
Dans un premier temps, l’objectif sera d’étudier l’influence de différents paramètres de formulation sur la réactivité et les propriétés des ciments silico-magnésiens. Une étude approfondie des interactions entre les phases cimentaires et les principaux constituants des sols contaminés sera ensuite menée. Enfin, la durabilité des matériaux formulés sera investiguée au moyen d’essais de lixiviation qui alimenteront une modélisation couplée chimie – transport, visant à mieux comprendre les mécanismes de dégradation de ces matériaux et leur évolution à long terme.
Ce projet de recherche s'adresse à un doctorant souhaitant approfondir ses compétences en physico-chimie des matériaux, et contribuer à des solutions innovantes pour la gestion des sols pollués et le développement de liants à faible impact environnemental.