Capteur multi-physique à la convergergence entre l’optomécanique et la photonique

Les capteurs optomécaniques représentent une classe de dispositifs MEMS de pointe, offrant une sensibilité exceptionnelle, une large bande passante, et permettant une co-intégration avec les dispositif usuels réalisés sur les plateformes de photonique sur silicium. Ces capteurs ouvrent la voie à de nombreuses applications, notamment pour des accélérometres, comme spectrométres de masse ou encore pour la détection de gaz. Par ailleurs, les capteurs optiques basés sur des circuits photoniques intégrés (désignés sous l'acronyme PIC pour "Photonic Integrated Circuits") ont également démontré un fort potentiel pour la détection de gaz.

Ce doctorat a pour objectif le développement d’un capteur multi-physique hybride, intégrant à la fois des composants optomécaniques et photoniques, afin d’améliorer significativement les performances de détection. En combinant ces deux technologies, le capteur offrira une capacité de détection multi-dimensionnelle inédite.

Le doctorant travaillera au CEA-Leti, un institut de recherche de renommée internationale, et bénéficiera d’un accès à des équipements de pointe ainsi qu’à une expertise reconnue en fabrication MEMS, photonique intégrée et intégration de capteurs.

Les travaux porteront sur :

-Conception du capteur : approche analytique et simulation numérique par éléments finis pour optimiser l’architecture du dispositif

-Fabrication en salle blanche : collaboration avec les équipes spécialisées du CEA pour réaliser le capteur en silicium

-Caractérisation expérimentale : réalisation de mesures optomécaniques et photoniques

-Intégration et évaluation du système : validation des performances et intégration avec les interfaces optiques, électroniques et fluidiques.

Cette thèse offre une opportunité unique d’explorer la convergence entre MEMS et photonique sur silicium dans un environnement de recherche de très haut niveau. Les applications visées incluent la santé, la surveillance de l’environnement et l’industrie.

Le CEA-Leti recherche un(e) candidat(e) motivé(e), passionné(e) par les MEMS, la photonique et les capteurs, prêt(e) à s'investir dans ce sujet passionnant!

Effets électroniques dans les cascades de collisions dans le GaN

Dans les environnements radiatifs tels que l'espace et les installations nucléaires, les composants microélectroniques sont soumis à des
flux intenses de particules qui détériorent leur fonctionnement en dégradant les matériaux les constituant. Les particules entrent en
collision avec des atomes dans les matériaux semi-conducteurs, leur cèdent une partie de leur énergie cinétique et les éjectent de
leur site cristallin. Les atomes éjectés vont à leur tour générer des collisions, formant une cascade de collisions qui conduira à la
création de défauts de déplacements. De plus, les particules chargées primaires ou secondaires (issues de l’interaction avec un
neutron par exemple) vont aussi interagir spécifiquement avec les électrons du réseau et leur céder une partie de leur énergie en générant des paires électron-trou. On parle de freinage électronique. Une simulation complète de cascade de collisions se doit donc d’intégrer
ces deux éléments : collisions avec les noyaux des atomes et effets électroniques.
La méthode de prédilection pour la simulation de cascades de collisions à l’échelle atomique est la dynamique moléculaire (DM).
Cependant, les effets électroniques ne sont pas inclus car la méthode ne traite pas explicitement les électrons. Pour pallier à ce
problème, des modules additionnels à la DM imitant le plus fidèlement possible les effets des électrons doivent être utilisés. L’état de
l’art en ce qui concerne la simulation du freinage électronique d’un projectile dans un solide est la méthode de la théorie de la
fonctionnelle de la densité dépendante du temps (TDDFT). L’objectif de cette thèse est de combiner DM et TDDFT pour réaliser des
simulations de cascades de collisions dans le GaN et étudier l’influence des effets électroniques. En plus de compétences transverses
communes à toute thèse, le/la candidat.e sera amené.e à développer des compétences dans plusieurs méthodes de modélisation
à l’échelle atomique, en physique du solide, en interactions particules-matière, en environnement linux ainsi qu’en programmation.

Mesure de la vitesse du son dans H2, He constitutifs des intérieurs des géantes gazeuses

L'objectif de la thèse est d'étudier les mélanges hydrogène-hélium en phase fluide à haute pression et haute température par spectroscopie Raman et Brillouin. Les expériences seront effectuées en cellule a enclumes diamant sous chauffage laser permettant d’explorer un vaste domaine de pression et de température représentatif des intérieurs planétaires des géantes de gaz (1-300 GPa, 300-4000 K). La spectroscopie Raman sera utiliser pour sonder les changements chimiques susceptibles d’apparaître en conditions extrêmes. La spectroscopie Brillouin donnera accès à la vitesse du son adiabatique et aux équations d’état de ces systèmes en phase fluide. Ces données seront particulièrement utiles pour améliorer la modélisation des intérieurs de Jupiter et Saturne.

Qubits volants dans le graphène

Les systèmes à l'état solide, actuellement envisagés pour le calcul quantique, sont construits à partir de systèmes localisés à deux niveaux, dont des exemples emblématiques sont les qubits supraconducteurs ou les points quantiques semi-conducteurs. Étant donné qu'ils sont localisés, ils nécessitent une quantité fixe de matériel par qubit.

Les qubits propagateurs ou "volants" présentent des avantages distincts par rapport aux qubits localisés : l'empreinte matérielle dépend uniquement des portes et des qubits eux-mêmes (photons), qui peuvent être créés à la demande, rendant ces systèmes facilement évolutifs. Un qubit qui combinerait les avantages des systèmes localisés et des qubits volants offrirait un changement de paradigme dans la technologie quantique. À long terme, la disponibilité de ces objets ouvrirait la possibilité de construire un ordinateur quantique universel combinant une petite empreinte matérielle fixe et un nombre arbitrairement grand de qubits avec des interactions à longue portée. Une approche prometteuse dans ce sens consiste à utiliser des électrons plutôt que des photons pour réaliser de tels qubits volants. L'avantage des excitations électroniques réside dans l'interaction de Coulomb, qui permet la mise en œuvre d'une porte à deux qubits.

L'objectif de ce doctorat sera le développement de la première plateforme nanoélectronique quantique pour la création, la manipulation et la détection d'électrons volants sur des échelles de temps allant jusqu'à la picoseconde, afin de les exploiter pour des technologies quantiques.

Etude transverse des relations entre la nature des carbones durs et les propriétés des électrodes pour les batteries Na-ion

Les carbones durs sont les matériaux d’électrode négative les plus utilisés dans les batteries Na-ion. Leur capacité au-delà de 300 mAh/g, la tension de fonctionnement basse, la durée de vie et leur tenue en puissance en font la meilleure option pour la commercialisation des batteries Na-ion. Néanmoins, certains verrous demeurent afin d’approcher des performances des technologies Li-ion à faible impact, comme le LF(M)P/graphite. L’un des principaux verrous est sa faible densité volumique. En effet, sa nature désordonnée et la microporosité qui en découle lui confère une densité squelettique plus faible que celle du graphite. Ceci a un fort effet sur la densité d’énergie volumique, mais aussi massique du fait de la difficulté à compresser les électrodes.

L’objectif principal de la thèse est de faire le lien entre la densité squelettique du matériau et la capacité à calandrer les électrodes afin de diminuer la porosité de l’électrode. Pour cela, nous évaluerons dans un premier temps le lien entre la structure, la morphologie et l’état de surface du carbone dur et la densité de l’électrode. Nous tenterons de comprendre l’impact du calandrage sur les propriétés du matériau. Puis nous évaluerons la tortuosité et la conductivité des électrodes de carbone dur afin de prévoir leurs performances. Enfin, nous tenterons d’améliorer et d’optimiser les électrodes en termes de densités d’énergie en travaillant notamment sur les formulations.

Etude des phénomènes rhéologiques à l’œuvre lors de l’enrobage de déchets en matrice vitreuse

Les déchets issus de l'assainissement et du démantèlement présentent une grande diversité en termes de composition chimique et de forme physique. Ils peuvent notamment se présenter sous forme de dépôts solides, de poudres, de boues ou de solutions liquides. Pour les conditionner, l'enrobage avec un liant vitreux semble prometteur en raison de sa température de travail plus basse que les procédés de vitrification classiques.
L'enrobage implique le chauffage du mélange de déchet et d'adjuvant vitreux entre 800 et 1200°C, ce qui nécessite une compréhension approfondie du comportement rhéologique du système en température. Trois axes de recherche seront étudiés au cours de la thèse : l'influence du taux de charge et de la nature de l'adjuvant sur le comportement à l'écoulement, l'étude des mélanges déchet humide-adjuvant pour comprendre le comportement des espèces volatiles, et l'impact de la réactivité entre le déchet et l'adjuvant sur les propriétés du système.
Au final, l’ensemble des connaissances acquises devront permettre, d’une part, d’optimiser le taux de remplissage du conteneur tout en maximisant le taux d’incorporation de déchet et, d’autre part, d’orienter le choix de l’adjuvant vitreux le plus adapté.

Le doctorant bénéficiera des compétences reconnues du laboratoire d’accueil dans le domaine de la rhéologie des systèmes complexes de la basse température (boues, bitumes, ciments) à la haute température (fontes verrières homogènes et cristallisées) et de l’ensemble des moyens de caractérisation nécessaires au bon déroulement de la thèse. L’ensemble de la thèse se déroulera en environnement non nucléaire à l’aide de simulants inactifs.
Le candidat présentera des compétences dans les domaines suivants : rhéologie, matériaux, verres, thermique, travail en équipe et goût pour l’expérimentation. L’ensemble des compétences transverses acquises dans le cadre de ce doctorat pourra être valorisé à terme dans un grand nombre de secteurs faisant appel à la rhéologie de systèmes complexes.

Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde

Le projet de thèse est axé sur l'étude avancée de la dynamique de photoémission attoseconde. L'objectif est d'accéder en temps réel aux processus de décohérence induits, par exemple, par l'intrication quantique électron-ion. Pour ce faire, l’étudiant-e développera des techniques de spectroscopie attoseconde utilisant un nouveau laser Ytterbium à taux de répétition élevé.

Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d'impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l'exploration de la matière à l'échelle de temps intrinsèque de l'électron : la spectroscopie attoseconde permet d'étudier en temps réel le processus quantique de photoémission et de filmer en 3D l'éjection du paquet d'ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d'outils expérimentaux et théoriques pour traiter la décohérence et l'intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].

L'objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d'accéder à l'évolution en temps réel de la décohérence et de l'intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l'aide d'une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d'utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l'intrication quantique avec une précision sans précédent.

Ce projet de thèse s'inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L'étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.

Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)

Synthèse d’alcanes biosourcés à partir d’esters méthyliques d’huiles végétales

Les alcanes ou hydrocarbures sont des molécules essentielles au secteur énergétique (carburants) comme en chimie de spécialité (cosmétiques, adhésifs…) ou en chimie fine. Aujourd’hui, ils sont essentiellement issus de ressources fossiles non disponibles à l’échelle nationale et non renouvelables, leur utilisation participant ainsi au dérèglement climatique. Pour diminuer l’empreinte carbone et renforcer l’autonomie énergétique, la production efficace des hydrocarbures à partir de sources renouvelables et disponibles comme la biomasse apparaît donc comme une alternative intéressante.
Ce projet de thèse se concentre sur le développement de méthodes innovantes pour produire des hydrocarbures biosourcés à partir d'esters méthyliques d'huiles végétales (EMHV). L'objectif principal est d'extruder le dioxyde de carbone des EMHV en une seule étape catalytique, utilisant la lumière comme source d'énergie renouvelable. Le projet est structuré en deux volets : le premier vise à vérifier la compatibilité des systèmes catalytiques pour la rupture de la liaison C–O avec des processus de décarboxylation photocatalytique, tandis que le second se concentre sur la recombinaison des résidus alkyles pour synthétiser des hydrocarbures.
En contribuant à réduire la dépendance aux combustibles fossiles et à diminuer les émissions de gaz à effet de serre, le projet de thèse s’inscrit donc dans la stratégie de diversification des sources d’énergie.

Développement et étude d'un matériau composite laminé intégrant des nanoTubes de carbone pour application en réservoirs cryogéniques

L'utilisation de matériaux composites dans le domaine spatial a conduit à de grandes améliorations de poids. Pour continuer à réaliser un gain de poids significatif, le réservoir cryogénique composite est la prochaine application technologique à atteindre en remplaçant les réservoirs d'ergols cryogéniques en alliage métallique actuels. Les matériaux composites à matrice organique renforcée plus légers (au moins aussi performants d'un point de vue mécanique, thermique, chimique et de résistance à l'inflammation) sont une cible réaliste à atteindre qui a été explorée ces dernières années. De nombreuses approches de recherche tendent à répondre à ce verrou technologique, mais les potentialités des nanotubes de carbone (NTC) en termes de propriétés mécaniques et physiques, doivent être explorées plus en profondeur.

Une première phase d'évaluation de l'intérêt des NTC pour les applications spatiales (collaboration CNES/CEA/I2M/CMP Composite) a été menée afin d'associer des NTC à une matrice cyanate-ester dans des matériaux composites stratifié suivant trois procédés et protocoles de développement de composites stratifiés : (i) le transfert de mats de NTC alignés par pressage à chaud, (ii) la dispersion de NTC enchevêtrés mélangés à de la résine, ou (iii) la croissance de nanotubes alignés directement sur le pli sec. Connaissant les sollicitations mécaniques et thermiques, l'objectif est de démontrer l'efficacité des NTC et l'influence de leurs caractéristiques sur la tolérance aux dommages du matériau apportée par la fonctionnalisation des NTC et consiste à retarder le processus de fissuration du composite à proximité de la couche de NTC et ainsi à bloquer la percolation du réseau de fissuration qui conduit à la perte d'étanchéité. Pour le procédé de développement privilégié identifié, l'objectif de ce travail doctoral est désormais de consolider la fonctionnalisation du matériau par des NTC (forme, densité, etc.) et la compréhension du comportement mécanique (à température ambiante et à basse température) pour le développement du matériau feuilleté intégrant des NTC.
Connaissant l'application finale potentielle comme réservoir cryogénique ou pour l'amélioration de la durabilité des matériaux structuraux dans une double application, des essais pertinents seront réalisés pour démontrer l'impact en termes de développement de dommages et d'étanchéité par rapport au même matériau sans NTC.

Alternatives aux perfluorés pour les traitements d’hydrofugation et oléofugation des textiles utilisés pour la protection corporelle individuelle NRBC

Trouver des alternatives aux composés fluorés (PFAS) concerne des domaines d'application très différents. Parmi eux
le traitement de textiles techniques pour les rendre hydrofuges et oléofuges est un enjeu majeur pour fabriquer
des tenues de protection aux contaminants tant aqueux que huileux. Notre laboratoire développe de telles alternatives en greffant
de manière covalente des molécules sur des fibres sélectionnées parmi celles déjà utilisées pour les textiles techniques. la thèse sera axée autour d'un travail expérimental composé de deux volets. Le premier volet consistera à améliorer et qualifier
au niveau semi-industriel les propriétés hydrofuges et oléofuges déjà obtenues et qualifiées selon les normes en vigueur (glissement de gouttes d'eau et d'huile,
imprégnation lente de gouttes d'huiles) grâce à nos revêtements chimiques nanométriques. Le second volet sera dédié à optimiser la structure du tissage, en relation avec le traitement chimique, pour déterminer le tissage optimal en fonction
des propriétés voulues. Le travail sera effectué en contact étroit avec un industriel du textile technique et avec l'ENSAIT de Roubaix.

Top