Dévéloppement d’un instrument microfluidique sans lentille de mesure in-situ de cinétiques de dissolution faciès dépendants
Cette thèse fait partie d’un programme ambitieux désigné comme un programme prioritaire de recherche. Ce projet identifie le sous-sol français comme un réservoir majeur de ressources nécessaires à la transition énergétique.
Dans ce contexte, un des enjeux majeurs est la dissolution de minerais dans le cadre de l’extraction minière et de la métallurgie extractive. En particulier, dans l’objectif de l’industrialisation des procédés, les cinétiques de dissolution des minerais doivent être compatibles avec l’empreinte au sol des installations, la biocompatibilité et le volume des réactifs consommés.
Le constat aujourd’hui est la très forte inadéquation entre le volume des données expérimentales produites et celles nécessaires pour modéliser les processus chimiques indispensables pour démontrer la viabilité des procédés industriels.
Cette thèse propose de mettre au point un banc prototype millifluidique d’acquisition de données cinétiques en masse par des techniques d’imagerie sans lentille. Ceci permettra de mesurer des cinétiques réactionnelles de dissolution par des techniques de reconstitution 3D, in-situ, dans des conditions chimiques stables et avec une représentativité statistique permettant la prise en compte des propriétés originales du solide.
Une large part des recherches sera orientée vers la mise au point de la technique optique sans lentille dans un dispositif millifluidique et la production en masse de données cinétiques chimiques pour des modèles de dissolution catalytiques.
Le profil recherché est celui d'un étudiant en physique et chimie généraliste, avec une forte envie d'apprentissage dans les domaines qu'il connait le moins comme la microfluidique ou de l'optique. A l'issue de cette thèse, l'étudiant acquerra une solide expérience professionnelle dans la recherche appliquée et apprendra à évoluer dans un environnement multithématique.
Modélisation multiphysique du comportement des gaz de fission dans la microstructure des combustibles nucléaires
Face à l’urgence climatique, l'accélération de la transition vers des technologies décarbonées est impérative, ce qui implique entre autre le développement de matériaux plus performants pour la production et le stockage de l’électricité. Cela inclut l’innovation dans le domaine des combustibles au cœur du fonctionnement des réacteurs nucléaires. La compréhension et la prédiction de leur comportement sont nécessaires pour améliorer la sécurité et l’efficacité du parc nucléaire actuel et futur.
Un aspect clé concerne les gaz de fission générés lors des réactions de fission. Ces atomes de gaz, peu solubles, forment des bulles nanométriques puis micrométriques qui grossissent pendant l'exploitation du combustible, affectant significativement les propriétés macroscopiques. La simulation numérique, complémentaire à la caractérisation expérimentale, permet de modéliser la formation et l'évolution de ces bulles, ainsi que de prédire l'évolution des propriétés. Cette approche facilite la conception de nouveaux types de combustible aux performances accrues.
L’objectif de cette thèse est de contribuer au développement et à l’amélioration des modèles de simulation du comportement des gaz de fission dans la microstructure polycristalline des combustibles nucléaires, notamment l’oxyde d’uranium. Le/la doctorant·e devra définir un modèle physique basé sur la méthode du champ de phase, calculer les paramètres d’entrée et réaliser des simulations numériques reproduisant des expériences d’irradiation menées au sein de notre département. Ces travaux permettront d’approfondir notre compréhension des phénomènes physiques sous-jacent au comportement du gaz (formation de bulles, relâchement et gonflement engendré) grâce à la comparaison directe entre les résultats des simulations et les mesures expérimentales. Ce projet constituera également la validation expérimentale du code de calcul scientifique INFERNO qui sera utilisé pour ces simulations sur les supercalculateurs du réseau national.
La thèse se déroulera au Département d’Étude des Combustibles (DEC) de l’institut IRESNE (CEA-Cadarache), dans un cadre collaboratif impliquant des experts en modélisation et en caractérisation expérimentale du CEA. Le/la doctorant·e sera amené·e à disséminer les résultats de ses recherches via des publications scientifiques et à participer à des congrès internationaux. Au cours de la thèse, il/elle développera une expertise approfondie en modélisation multiphysique, simulations numériques et informatique. Ces compétences seront aisément valorisables pour une carrière dans la recherche académique, dans la R&D industrielle, ou l’ingénierie des matériaux.
Références :
https://doi.org/10.1063/5.0105072
https://doi.org/10.1016/j.commatsci.2019.01.019
Les anhydrides d’alditols biosourcés, architectures moléculaires modulables pour une approche durable de l’extraction d’uranium
Les procédés actuels d'extraction de l'uranium en milieux sulfurique, phosphorique et nitrique, bien que performants et justifiant leur application à grande échelle, nécessitent des améliorations pour accroître leur efficacité et réduire leur impact environnemental. Ce projet doctoral a pour objectif d'améliorer ces performances en se concentrant sur la phase d'extraction liquide-liquide. La proposition consiste à transférer sélectivement l’uranium, extrait après concassage, broyage et lixiviation des roches, vers une phase huileuse contenant un ligand lipophile adapté au lixiviat utilisé. L'ambition est ici de développer de nouvelles structures d’extractants analogues aux trialkylamines (procédé AMEX), aux trialkylphosphines et diesters phosphoriques (procédé URPHOS), et aux trialkylphosphates (raffinage). Le doctorant synthétisera ainsi des extractants amphiphiles chiraux, dérivés d’anhydrides bicycliques d’alditols biosourcés (isosorbide, isomannide et isoidide), qu’il évaluera pour leur affinité vis-à-vis de l'uranium et leur sélectivité face aux ions compétiteurs. Il analysera ensuite les mécanismes moléculaires et supramoléculaires de ces nouveaux extractants (coordination, agrégation) à l’aide de méthodes de pointe, comme l’UV, l’IR, la RMN multinoyaux, la diffusion de rayons X et la diffusion de neutrons. La formation doctorale permettra au doctorant de s'intégrer facilement dans les milieux académique ou industriel, notamment dans les domaines du cycle du combustible nucléaire, de la chimie séparative et de la formulation. Les recherches se dérouleront au sein du laboratoire LTSM de l'Institut de Chimie Séparative de Marcoule, reconnu pour son expertise en chimie et physico-chimie des extractants pour l'hydrométallurgie. Le doctorant bénéficiera d'un encadrement de qualité et d'un environnement de travail collaboratif, entouré de doctorants, post-doctorants et d’ingénieurs, dans un cadre serein et stimulant.