Alliages de lithium pour batteries tout solide à électrolyte sulfure

L’utilisation du lithium métal comme électrode négative permettrait d’augmenter fortement la densité d’énergie des batteries actuelles. Cependant, aujourd’hui, ce matériau conduit rapidement à des courts-circuits au cours des cycles de charge/décharge, notamment à cause la formation de dendrites et de l’instabilité de l’interface avec l’électrolyte. Les batteries tout-solide, en particulier avec des électrolytes sulfures, constituent une alternative prometteuse, mais les limitations du lithium métal persistent. Les alliages de lithium apparaissent alors comme une solution pour améliorer les propriétés mécaniques et interfaciales tout en conservant de bonnes densités énergétiques.
L’objectif de la thèse est de développer et sélectionner des alliages de lithium adaptés aux électrolytes sulfures pour des batteries de génération 4, puis de les intégrer dans des cellules tout-solide afin d’étudier les mécanismes de dégradation. Le travail couvre à la fois la synthèse des alliages, leur mise en forme compatible avec l’industrie et leur intégration en cellules. Les alliages seront synthétisés sous forme de films fins, caractérisés finement, puis testés électrochimiquement en cellules laboratoire et en cellules-poche. Enfin, les phénomènes de dégradation, notamment aux interfaces, seront étudiés grâce à des caractérisations avancées post-mortem.

Caractérisation avancée des défauts générés par les procédés technologiques pour l’imagerie infrarouge haute-performance

Cette thèse s’inscrit dans le domaine des détecteurs infrarouges refroidis. Le Laboratoire Infrarouge du CEA-LETI-MINATEC est spécialisé dans la conception et la fabrication de prototypes de caméras infrarouges, utilisées en défense, astronomie, surveillance environnementale et météorologie satellitaire.
Dans ce contexte d’imagerie haute-performance, il est crucial d’assurer une qualité optimale des détecteurs. Or, les procédés technologiques de fabrication peuvent introduire des défauts susceptibles de dégrader les performances des capteurs. La compréhension et la maîtrise de ces défauts sont essentielles pour accroître la fiabilité et optimiser les procédés.
L’objectif de la thèse est d’identifier et de caractériser précisément ces défauts à l’aide de techniques de pointe, rarement combinées, telles que la micro-diffraction de Laue et la nano-tomographie FIB-SEM, permettant une analyse structurelle à différentes échelles. En mettant en relation la nature et l’origine des défauts avec les procédés de fabrication et en quantifiant leur impact sur les performances, le ou la doctorant(e) contribuera directement à l’amélioration de la fiabilité et de l’efficacité des capteurs infrarouges de nouvelle génération.
Le/la doctorant(e) intègrera une équipe couvrant l’ensemble de la chaîne de fabrication des détecteurs et participera activement à l’élaboration (salle blanche LETI) et la caractérisation structurale (plateforme CEA-Grenoble, techniques avancées) des échantillons. Il/elle interviendra également dans la caractérisation électro-optique en partenariat avec le Laboratoire Imagerie infrarouge Refroidie (LIR), spécialisé dans l’analyse fine du matériau actif à des températures cryogéniques.

Mesure de la vitesse du son dans H2 et He constitutifs des intérieurs des géantes gazeuses

L'objectif de la thèse est d'étudier les mélanges hydrogène-hélium en phase fluide à haute pression et haute température par spectroscopie Raman et Brillouin. Les expériences seront effectuées en cellule a enclumes diamant sous chauffage laser permettant d’explorer un vaste domaine de pression et de température représentatif des intérieurs planétaires des géantes de gaz (1-300 GPa, 300-4000 K). La spectroscopie Raman sera utilisée pour sonder les changements chimiques susceptibles d’apparaître en conditions extrêmes. La spectroscopie Brillouin donnera accès à la vitesse du son adiabatique et aux équations d’état de ces systèmes en phase fluide. Ces données seront particulièrement utiles pour améliorer la modélisation des intérieurs de Jupiter et Saturne.

Propriétés chimiques et mécaniques des aluminosilicates N-A-S-H de géopolymère

Le conditionnement des déchets nucléaires de faible et moyenne activité repose principalement sur les ciments, mais leurs limites face à certains déchets (métaux réactifs, huile) imposent d’explorer de nouveaux matériaux plus performants. Les géopolymères, et en particulier ceux constitués d’aluminosilicates de sodium hydratés (système Na2O–Al2O3–SiO2–H2O, noté N–A–S–H) apparaissent comme une alternative prometteuse grâce à leur compatibilité chimique avec certains types de déchets.
Cependant, malgré l’intérêt croissant pour les géopolymères, des verrous scientifiques subsistent : 1/ les données thermodynamiques disponibles sur les N-A-S-H sont encore parcellaires, rendant difficile la prédiction, via la modélisation, de leur stabilité à long terme, 2/ le rôle de leur structure atomique dans leur réactivité reste incompris, 3/ les liens entre composition chimique (rapport Si/Al) et propriétés mécaniques ne sont pas établis, ce qui limite la représentativité des modèles créés.
En combinant expérimentation et modélisation pour relier structure atomique et propriétés, cette thèse a pour but d’obtenir des données inédites et robustes sur les propriétés chimiques et mécaniques des N-A-S-H. Elle s’articule autour de trois objectifs majeurs: 1/ déterminer l’impact de la composition des N-A-S-H sur leur dissolution et établir des constantes thermodynamiques de solubilité, 2/ caractériser leur structure atomique (aluminols, silanols, environnements hydratés) par spectroscopie RMN avancée, 3/ relier leurs propriétés mécaniques, mesurées par nano-indentation, à leur structure et à leur composition, en s’appuyant sur la modélisation par dynamique moléculaire.

Etude des processus diffusionnels de l’oxygène et de l’hydrogène dans les couches d’oxyde pré- et post-transitoires formées sur les alliages de zirconium

Les mécanismes de corrosion des alliages de zirconium dans les réacteurs à eau pressurisée font encore débat plus d’un demi-siècle après les premières recherches sur ce matériau. La littérature fait en effet état de deux mécanismes distincts de transport des espèces diffusantes dans les couches d’oxyde : l'un en faveur de la diffusion moléculaire de l’oxygène et de l’hydrogène à travers des canaux de nanopores interconnectés pendant le régime pré-transitoire, et l'autre plus favorable à la diffusion via des court-circuits (joints de grains...) de l'hydrogène quel que soit son état dans la couche d'oxyde. Dans ce dernier cas, la couche d'oxyde est considérée comme relativement homogène et imperméable au milieu oxydant, en l’occurrence l’eau du circuit primaire. En revanche, la première interprétation part du principe de l’existence d'une couche perméable au milieu en raison d’un réseau interconnecté de nanopores et ce même au cours du régime pré-transitoire, la densité des nanopores percolés augmentant avec le temps.
Comment, techniquement parlant, trancher entre ces deux interprétations divergentes en termes de mécanisme de diffusion menant, par conséquent, à des solutions de protection contre la dégradation différentes ? Quel est finalement le mécanisme réactionnel menant à l’hydruration des alliages de Zr et son oxydation ?
Pour répondre à cet enjeu, nous explorerons les processus diffusionnels en étudiant les vitesses de dissociation-recombinaison des espèces moléculaires à différentes températures dans des mélanges gazeux équi-isotopiques tels que H2/D2, 18O2/16O2, H218O/D216O, H218O/D2 etc à l’aide d’un dispositif expérimental muni d’un spectromètre de masse qui suit en temps réel les espèces moléculaires d’intérêt.

Mobilité des dislocations dans les alliages à haute entropie cubiques centrés

Les alliages à haute entropie sont des solutions solides monophasées multi-composants, tous présents en forte concentration. Cette classe de matériaux présente des améliorations significatives en termes de propriétés mécaniques par rapport aux alliages "classiques", et en particulier leur résistance élevée à haute température. Il est communément admis que les bonnes performances mécaniques proviennent des interactions des dislocations avec les éléments d'alliage, et qu’à haute température les impuretés ou dopants de nature interstitielle, comme l’oxygène, le carbone ou l’azote, jouent un rôle prépondérant. L’étude de la plasticité des alliages concentrés de structure cristalline cubique centrée dans le domaine des hautes températures constitue donc l’objectif de cette thèse. Les enjeux technologiques associés sont importants, ces alliages étant des matériaux de structure prometteurs, notamment pour les applications nucléaires où des températures de fonctionnement au-delà de l’ambiante sont visées.
Cette thèse s’attachera à comprendre et modéliser les mécanismes physiques contrôlant la tenue mécanique de ces alliages à haute température, en considérant différents alliages concentrés de complexité croissante, et en s’appuyant sur des outils de simulations atomiques, en particulier des codes de structure électronique ab initio. Nous nous focaliserons d’abord sur l’alliage binaire MoNb avant d’étendre aux alliages ternaires MoNbTi et MoNbTa, et d’étudier l’impact des impuretés d’oxygène sur le comportement plastique de ces alliages. Nous modéliserons les coeurs de dislocation et analyserons leur interaction avec les éléments substitutionnels et interstitiels afin de déterminer les barrières d’énergie contrôlant leur mobilité. Sur la base de ces résultats ab initio, nous développerons des modèles de durcissement permettant notamment de prédire la limite élastique en fonction de la température et de la composition de l’alliage.
Ce travail s’effectuera dans le cadre du projet DisMecHTRA financé par l’Agence Nationale de la Recherche, ce qui permettra en particulier de confronter nos modèles de durcissement aux données issues des expériences prévues dans le projet (essais mécaniques et microscopie électronique à transmission) et qui seront réalisées par les autres partenaires (CNRS Toulouse et Thiais). La thèse, hébergée au CEA Saclay, sera co-encadrée par une équipe du CEA Saclay et de MatéIS (CNRS, Lyon).

Simulation des gels d’altération des verres nucléaires à l’échelle mésoscopique à l’aide d’un système quaternaire.

Ce sujet s’inscrit dans le cadre des études réalisées sur le comportement à long terme des verres nucléaires immobilisant des déchets radioactifs et potentiellement destinés à être placés en stockage géologique. L’enjeu réside en la compréhension des mécanismes d’altération et de formation d'un gel (couche passivante pouvant ralentir la vitesse d’altération du verre) par l’eau et à la prédiction des cinétiques de relâchement des radionucléides sur le long terme.

L’approche de simulation proposée vise à prédire à l’échelle mésoscopique le processus de maturation du gel formé lors de l’altération du verre par l’eau à l'aide d'un "modèle à champs de phases" ternaire composé du silicium, du bore et de l’eau (lixiviant) auquel il conviendra d'ajouter l'alluminium.

Le modèle mathématique quaternaire sous-jacent est composé d’un ensemble d’Equations aux Dérivées Partielles non-linéaires couplées. Elles sont basées sur les équations de Allen-Cahn et du transport. La résolution numérique des équations associées est réalisée par méthode de Boltzmann sur réseaux (Lattice Boltzmann Method – LBM) programmée en C++ dans le code de calcul massivementparallèle LBM_saclay qui s’exécute sur plusieurs architectures HPC, aussi bien muti-CPUs que multi-GPUs.

Le sujet proposé nécessite de bonnes bases en mathématiques appliquées et en programmation afin de développer les algorithmes nécessaires à la bonne résolution du nouveau système d'équations fortement couplées.

Développement de systèmes extractants pour l'enrichissement isotopique du chlore

De nombreux concepts de réacteurs nucléaires à sels fondus fonctionnent à l’aide d’éléments sous forme de sels de chlorures. Le chlore (Cl) est naturellement composé à 76 % de 35Cl, qui par capture neutronique va former du 36Cl, un émetteur gamma à vie longue (t1/2 = 301 000 ans), et du soufre 36S, qui accélère les phénomènes de corrosion, et 24 % de 37Cl présentant une section de capture neutronique efficace drastiquement plus faible. Un approvisionnement en 37Cl est donc nécessaire afin de faire fonctionner ces réacteurs nucléaires à sels fondus. Il existe à ce jour des techniques permettant l’enrichissement du chlore, telles que l’ultracentrifugation, la diffusion thermique en phase liquide ou encore l’enrichissement par laser. L’enrichissement par extraction liquide-liquide du Cl fait l’objet de développements récents au sein du CEA. L’objectif de la thèse est d’identifier et de mettre en œuvre des systèmes chimiques permettant l’enrichissement en 37Cl par un procédé de chimie séparative. Le sujet de thèse vise à identifier sur la base des données de la littérature dans un premier temps, les familles de ligands et dans ces familles, les meilleurs candidats permettant un enrichissement en 37Cl. Ensuite, la synthèse et la purification en laboratoire desdits molécules sélectionnées seront réalisées. Finalement, les propriétés d’enrichissement des ligands synthétisés avec succès seront évaluées par chimie séparative, en réalisant une quantification des isotopes du Cl par spectrométrie de masse à plasma à couplage inductif (ICP-MS).
La thèse sera réalisée dans le Laboratoire des procédés de Recyclage et de Valorisation pour l’Energie (LRVE) au sein du CEA de Marcoule.
Le profil de l’étudiant recherché est un master 2 ou 3ème année d’école d’ingénieur en chimie, chimie organique ou chimie analytique. La pluridisciplinarité des compétences acquises et la rigueur développée par l’étudiant lors des manipulations entreprises seront des atouts appréciables pour le futur docteur.

Nouvelle génération de substrats organiques pour la conversion d'énergie électrique

Les récentes avancées dans les moteurs électriques et l'électronique de puissance associée engendrent une hausse significative des besoins en densité de puissance. Cette augmentation de la densité de puissance implique ainsi des surfaces d'échange thermique réduites, ce qui amplifie les défis liés à l'évacuation de la chaleur due aux pertes produites par les composants d’électronique de puissance lors de leur fonctionnement. En effet, l'absence d'une dissipation adéquate entraîne une surchauffe des composants électroniques, impactant leurs performances, durabilité et fiabilité. D’autres problématiques liées au coût, à la réparabilité et aux contraintes thermomécaniques remettent en question les interfaces thermiques isolantes traditionnelles réalisées à base de céramique. Ainsi, il est impératif de développer une nouvelle génération de matériaux dissipateurs thermiques prenant en considération l’environnement du système.

L’objectif de cette thèse est de substituer dans les systèmes de modules de puissance le substrat céramique, qui a pour rôle principal d’être la couche diélectrique du système, par un composite à matrice organique thermo-conducteur. Le substrat actuel présente des limitations bien connues (fragilité, mauvaise interface, limite de cyclage, coût). Le substrat organique devra avoir une conductivité thermique la plus élevée possible (>3 W/m.k) afin de dissiper convenablement la chaleur émise tout en étant isolant électrique avec une tension de claquage d’environ 3kV/mm. Il devra également avoir un coefficient d’expansion thermique (CTE) compatible avec celui du cuivre afin de supprimer les phénomènes de délamination lors des cyclages subis par le dispositif pendant son temps de vie. L’innovation des travaux du doctorant résidera dans l’utilisation de (nano)charges très conductrices thermiquement qui seront isolées électriquement (revêtement isolant) et pourront être orientées dans une résine polymère sous stimulus externe. Le développement du revêtement isolant électrique sur le cœur thermo-conducteur se fera par voie sol-gel. La synthèse sera contrôlée et optimisée en vue de corréler l’homogénéité et l’épaisseur du revêtement aux performances diélectriques et thermique du (nano)composite. L’interface charge/matrice (source potentielle de diffraction des phonons) sera également étudiée. Un second volet portera sur le greffage de nanoparticules magnétiques (NPM) sur les (nano)charges thermo-conductrices. Des NPM commerciales seront évaluées (selon les besoins des nuances synthétisées en laboratoire pourront être également évaluées). Les (nano)composites devront posséder une rhéologie compatible avec les procédés de pressage et/ou d’injection.

Modèle de cinétique informé par la microstructure : application aux explosifs solides

Lorsqu'une composition explosive est soumise à une sollicitation intense telle un choc, l'onde ainsi générée interagit avec la microstructure et notamment avec les défauts qu'elle contient. De par la nature des défauts, une localisation de l'énergie peut apparaître comme lors de la compaction de la porosité qui peut donner lieu à l'apparition de points chauds. Au delà d'une certaine taille critique, ces points chauds croissent du fait de la décomposition chimique de l'explosif et cela peut dans certains cas mener à la création d'une onde de détonation. Le rôle de ces points chauds est donc déterminant dans l'amorçage des explosifs solides. La majorité des modèles macroscopiques utilisés pour l'étude de la transition choc-détonation (TCD) sont des modèles phénoménologiques calibrés sur des expériences (par exemple des expériences de jauges multibrins) ne rendant donc pas compte des singularités microstructurales propres à chaque explosif. Il devient alors nécessaire de recalibrer un modèle pour chaque composition, ce qui limite toute capacité prédictive.

Les études par microtomographie de microstructures réelles des compositions explosives ont révélées que celles-ci s'éloignent significativement d'une description moyenne basée sur un pore sphérique. Par segmentation d'image, ces microtomographies peuvent fournir des ingrédients essentiels aux codes de simulations à l'échelle mésoscopique: en effet, ces microstructures peuvent être prises directement en entrée de calcul ou bien servir de base pour générer des microstructures virtuelles mais réalistes, étendant alors la base de données accessible du fait des difficultés expérimentales à générer ce type d'images en grand nombre.
La puissance de calcul disponible aujourd'hui nous permet désormais d'envisager des simulations explicites de microstructures réalistes de compositions explosives. Ces simulations en deux, voire trois dimensions, seront les éléments de base pour la construction d'un modèle macroscopique de cinétique pour la modélisation de la transition choc-détonation. Les résultats attendus de ce travail sont transverses et pourront se transposer à tous les matériaux énergétiques composites. L'effet d'un endommagement thermique ou mécanique sur le comportement d'un explosif ou d'un propergol solide (problématique de vulnérabilité) pourrait également bénéficier de ce projet. Cette connaissance plus fine du rôle de la microstructure (forme des grains, porosités, etc.) pourrait également améliorer les procédés de fabrication des charges (par ex. "Very Insensitive"-RDX).

Top