Observateurs explicables et IA interprétable pour accélérateurs supraconducteurs et identification d’isotopes radioactifs

Les accélérateurs du GANIL, SPIRAL1 et SPIRAL2, génèrent des données complexes dont l’interprétation reste difficile. SPIRAL2 souffre d’instabilités dans ses cavités supraconductrices, tandis que SPIRAL1 requiert une identification fiable des isotopes dans des conditions bruitées.
Ce projet de thèse vise à développer une IA interprétable fondée sur la théorie des observateurs, combinant modèles physiques et apprentissage automatique pour détecter, expliquer et prédire les anomalies. En intégrant des approches causales et des outils d’explicabilité comme SHAP et LIME, il renforcera la fiabilité et la transparence du fonctionnement des accélérateurs.

Dynamique de faisceau pour un accélérateur laser-plasma multi-étages

Les accélérateurs laser-plasma à champs de sillage (LWFAs) peuvent produire des gradients d'accélération supérieurs à 100 GV/m, ouvrant la voie à la réduction de la taille et du coût des futurs accélérateurs haute énergie pour des applications en rayonnement synchrotron, lasers à électrons libres, ainsi que des applications médicales et industrielles émergentes.
L’augmentation de l’énergie et de la charge du faisceau nécessite à la fois une maturité technologique et des schémas d'accélération innovants. Les configurations multi-étages — connectant plusieurs étages d'accélération plasma — offrent des avantages clés : augmenter l'énergie du faisceau au-delà des limites d'une cellule unique et améliorer la charge totale et/ou la cadence de répétition. Ces systèmes visent à surmonter les limitations des accélérateurs mono-étage tout en maintenant ou améliorant la qualité du faisceau à plus hautes énergies.
Concevoir un accélérateur délivrant des faisceaux stables, reproductibles et de haute qualité nécessite une compréhension approfondie de la physique de l'accélération plasma et du transport de faisceau entre les étages successifs.
S'appuyant sur l'expertise du DACM du CEA Paris-Saclay, cette thèse se concentrera sur les études physiques et numériques nécessaires pour proposer une conception intégrée d'un LWFA multi-étages, avec une attention particulière à l'optimisation de tous les composants —cellule plasma et lignes de transport — afin de préserver la qualité du faisceau en termes de taille transverse, divergence, émittance et dispersion en énergie.

Etudes du transport d’un faisceau d’électrons dans du gaz

Le Laboratoire Faisceaux et Electronique de Puissance utilise des faisceaux d’électrons relativistes pulsés intenses afin d’étudier la réponse thermo-mécanique des matériaux. Ces expériences sont réalisées sur l’installation CESAR du CEA CESTA, une installation délivrant un faisceau d'électrons très intense (800 keV, 300 kA) en un temps très bref (quelques dizaines de nanosecondes). Le faisceau doit être transporté sur une dizaine de centimètres, avant d’atteindre la cible, dans laquelle il sera soumis à un champ magnétique et interagira avec du gaz. L'ionisation du gaz par le faisceau limite les effets de charge d'espace et permet ainsi de transporter le faisceau jusqu'à la cible étudiée. La physique du transport du faisceau dans la chambre d'expérience est complexe, justifiant des études expérimentales et numériques pour donner une description pertinente du faisceau qui interagit avec les matériaux étudiés.
Une partie des expériences sur CESAR est dédiée à la caractérisation du faisceau d'électrons. Cependant, le nombre de tirs étant limité, une étude systématique de la physique mise en jeu n'est pas envisageable sur ce moyen. En revanche, l'installation RKA, délivrant un faisceau moins intense que CESAR, est adaptée pour la réalisation de tirs d'étude. RKA permet donc d’étudier le comportement d'un faisceau propagé dans un gaz et de mettre au point les techniques et diagnostics associés. En outre, un code suivant la méthode PIC (Particle In Cell) permet de simuler le transport d’un faisceau d’électrons dans du gaz est actuellement développé.
Les expériences serviront alors à valider le code de calcul dans les différents régimes de transport. Le(la) candidat(e) devra choisir ou proposer des diagnostics afin de comparer les grandeurs représentatives du faisceau ou du plasma issues de l'expérience aux résultats de la simulation.

La thèse se déroulera entièrement au CEA/CESTA, situé au BARP (33) au sud de Bordeaux.

Top