Time-tagging précis et tracking des leptons dans des faisceaux de neutrinos de nouvelle génération avec des détecteurs PICOSEC-Micromegas de grande surface.

Le projet ENUBET (Enhanced NeUtrino BEams from kaon Tagging) vise à développer un faisceau de neutrinos « monitoré » dont le flux et la composition en saveurs sont connus avec une précision au pourcent près, afin de permettre des mesures de sections efficaces de neutrinos d’une précision inédite. Pour cela, le tunnel de désintégration est instrumenté pour détecter et identifier les leptons chargés issus des désintégrations de kaons.
Le Micromegas PICOSEC est un détecteur gazeux à microstructures rapide et à double étage d’amplification, combinant un radiateur Tcherenkov, une photocathode et une structure Micromegas. Contrairement aux Micromegas classiques, l’amplification s’y produit également dans la région de dérive, où le champ électrique est plus intense que dans la région d’amplification principale. Cette configuration permet d’atteindre des résolutions temporelles exceptionnelles, de l’ordre de 12 ps pour les muons et d’environ 45 ps pour les photoélectrons uniques, faisant du PICOSEC l’un des détecteurs gazeux les plus rapides jamais réalisés.
L’intégration de modules Micromegas PICOSEC de grande surface dans le tunnel de désintégration d’ENUBET permettrait un horodatage des leptons avec une précision inférieure à 100 ps, améliorant l’identification des particules, réduisant le pile-up, et facilitant la corrélation entre les leptons détectés et leurs kaons parents — une étape clé vers des faisceaux de neutrinos à flux contrôlé avec précision.
Dans le cadre de cette thèse, le candidat ou la candidate participera à l’optimisation et à la caractérisation de prototypes Micromegas PICOSEC de 10 × 10 cm², ainsi qu’à la conception et au développement de détecteurs de plus grande surface pour l’expérience nuSCOPE et l’instrumentation du hadron dump d’ENUBET.

Développement d’algorithmes de trajectographie basés sur l’apprentissage automatique pour le détecteur Upstream Pixel de LHCb au LHC

Cette thèse vise à développer et optimiser les futures performances de trajectographie de l’expérience LHCb au Grand collisionneur de hadrons (LHC) grâce à l’exploration d’algorithmes avancés d’apprentissage automatique. Le nouveau sous-détecteur Upstream Pixel (UP), situé avant le champ magnétique, jouera un rôle central à partir du Run 5 pour réduire précocement le taux de fausses traces et améliorer la reconstruction rapide des trajectoires dans des environnements à forte multiplicité.

Afin de mener avec succès les programmes de physique ambitieux de LHCb — étude des désintégrations rares, violation de CP dans le Modèle Standard, caractérisation du plasma de quarks et de gluons dans les collisions d’ions lourds — une trajectographie rapide et extrêmement précise est indispensable. Cependant, l’augmentation des taux de données et de la complexité des événements attendue pour les futures prises de données impose de dépasser les méthodes classiques, en particulier dans les collisions noyau-noyau où des milliers de particules chargées sont produites simultanément.

Dans ce contexte, nous étudierons une gamme de techniques modernes d’apprentissage automatique, dont certaines ont déjà fait leurs preuves pour la trajectographie dans le détecteur VELO de LHCb. En particulier, les Réseaux de Neurones à Graphes (Graph Neural Networks, GNN) constituent une solution prometteuse permettant d’exploiter les corrélations géométriques entre impacts pour améliorer l’efficacité de reconstruction tout en réduisant les faux positifs.

Le travail de thèse comprendra dans un premier temps le développement d’une simulation GEANT4 réaliste du détecteur UP afin de produire des jeux de données adaptés à l’apprentissage machine. Dans un second temps, les modèles les plus performants seront optimisés pour une exécution en temps réel sur GPU, en accord avec l’évolution du système de reconstruction Allen de LHCb. Ils seront ensuite intégrés et validés dans le framework logiciel de l’expérience, avec à la clé une contribution majeure à la performance de LHCb pour le Run 5 et les phases ultérieures du programme expérimental.

Exploitation des données LEP pour la fragmentation : Une analyse orientée TMD des paires pi+pi- dans les collisions e+e-

La mesure des hadrons produits dans les collisions révèle le mécanisme de fragmentation, où les quarks et les gluons forment des hadrons détectables. Les Fonctions de Fragmentation (FF) décrivent la probabilité de ce processus, mais elles ne sont pas calculables théoriquement. Elles doivent donc être extraites expérimentalement en ajustant des modèles aux données.
Les FF dépendantes du moment transverse (TMDFF) décrivent plus précisément l'impulsion transverse des hadrons produits. Pour les mesurer, une réaction idéale est la production de paires de pions de charges opposées (pi+pi-) dans les collisions électron-positron (e+e-). Étonnamment, aucune mesure de ce type n'a encore été réalisée, ni par les anciennes expériences comme LEP, ni par les actuelles comme Belle.
Ce projet propose d'exploiter l'initiative OpenData du CERN pour analyser les données archivées de l'expérience LEP (DELPHI ou ALEPH). L'objectif est d'y mesurer le taux de production des paires pi+pi- en fonction de leur moment transverse.
La première étape consiste à maîtriser l'accès à ces données historiques et leurs logiciels parfois obsolètes. Ensuite, il faudra extraire les distributions physiques clés, comme les distributions angulaires. La troisième étape est de simuler ces mêmes collisions avec un générateur comme Pythia pour comparer et interpréter les données. L'analyse identifiera ensuite les observables les plus sensibles aux TMDFF via des simulations.
Le résultat sera intégré à une analyse globale de données, devenant la première à inclure des données e+e-, pour une extraction bien plus précise des TMDFF. Cela permettra de repousser les frontières de notre connaissance des mécanismes non-perturbatifs de la fragmentation des partons.

Du détecteur à la découverte : construire le trajectographe interne d’ATLAS et explorer la physique du boson de Higgs au HL-LHC

Ce sujet de thèse combine un volet instrumental et un volet d’analyse physique lié à la physique du boson de Higgs au LHC. Il porte à la fois sur la construction et la mise en service du nouveau trajectographe de l’expérience ATLAS (ITk) et sur l’étude de la sensibilité d’ATLAS, durant la phase à haute luminosité du LHC (HL-LHC), à des processus clés mettant en jeu les couplages du boson de Higgs, fortement dépendants des performances de l’ITk. Le candidat participera au développement, à l’exploitation et à l’optimisation des bancs de test pour les modules à pixels ITk au CEA. Le CEA, en collaboration avec deux autres laboratoires de la région parisienne, est responsable de l’assemblage et des tests d’environ 20 % des modules à pixels de l’ITk. L’étudiant contribuera également à la mise en service du détecteur au CERN. Parallèlement, le doctorant mènera une analyse de physique visant à étudier la sensibilité des données d’ATLAS aux interactions entre le boson de Higgs et le quark top lors de la phase HL-LHC. Cela inclura notamment une analyse de la violation de CP dans le canal ttH, ainsi qu’une étude de la production tH, un processus particulièrement sensible aux couplages Higgs–top et Higgs–W. Les deux premières années de thèse seront basée au CEA Saclay, tandis que la dernière année sera basée au CERN.

Cosmologie avec la forêt Lyman-alpha du grand relevé cosmologique DESI.

La distribution de matière à grande échelle dans l'univers est utilisée pour tester nos modèles cosmologiques. On utilise pour cela avant tout les oscillations acoustiques de baryons (BAO) mesurée dans la fonction de corrélation à deux points de cette distribution. Cependant l'ensemble du champ de matière contient des informations à diverses échelles, qui permettent de mieux contraindre nos modèles que le BAO seul. A redshift z > 2, la meilleure sonde de cette distribution de matière est la forêt Lyman-alpha, un ensemble de raies d'absorption mesurées dans les spectres de sources lointaines. Le grand relevé spectroscopique DESI a collecté environ un million de ces spectres. Avec un lot partiel de données "DR2", nous avons déjà mesuré le BAO avec une précision de 0.7%, contraignant ainsi fortement le taux d'expansion de l'univers au cours des premiers milliards d'années de son évolution.

Le but de cette thèse est d'exploiter l'ensemble complet des données Lyman-alpha à grande échelle de DESI pour obtenir les meilleures contraintes possibles sur les modèles cosmologiques. Pour cela, dans une première étape l'étudiant appliquera pour la première fois une méthode dite de reconstruction, qui permet d'améliorer la précision de la mesure du BAO, en exploitant l'information du champ de densité de matière. Dans la suite de sa thèse, en lien avec des efforts similaires menés dans notre groupe avec les galaxies de DESI, il implémentera une nouvelle méthode dite de simulation-based inference: dans cette approche l'ensemble du champ de matière est utilisé directement pour estimer les paramètres cosmologiques en particulier l'énergie noire. L'étudiant apportera ainsi une pierre importante aux mesures cosmologiques finales de DESI avec le Lyman-alpha.

Cette thèse sera de préférence précédée d'un stage.

Cacracterisation et calibration de détecteurs cryogéniques à l'échelle de 100 eV pour la détection de la diffusion cohérente des neutrinos (CEvNS)

DESCRIPTIONS:

L’expérience NUCLEUS [1] cherche à détecter les neutrinos de réacteur via la diffusion élastique cohérente neutrino-noyau (CEvNS). Prédit en 1974 et mis en évidence pour la première fois en 2017, ce processus donne accès à des tests inédits du modèle standard à basse énergie. La cohérence de la diffusion sur l’ensemble du noyau augmente de plusieurs ordres de grandeurs sa section efficace ce qui en fait également une opportunité pour la surveillance des réacteurs par les neutrinos. Le dispositif expérimental de NUCLEUS est en cours d’installation auprès des réacteurs EDF de Chooz (Ardennes, France) qui sont une source intense de neutrinos. Le seul signal physique d’un événement CEvNS est l’infime recul du noyau cible, avec une énergie très faible, inférieure à 1 keV. Pour le détecter NUCLEUS utilise des cristaux de CaWO4 d’environ 1 g, placés dans un cryostat qui les refroidis à une température de 15 mK. Le recul du noyau provoque des vibrations du réseau cristallin équivalentes à une élévation de la température de ~100 µK, mesurée à l’aide d’un capteur Transition Edge Sensor (TES) déposé sur le cristal. Ces détecteurs permettent d’atteindre d’excellentes résolutions en énergie de seulement quelques ~eV et des seuils de détection de l’ordre de ~10 eV [2]. Le dispositif expérimental de NUCLEUS a été testé et validé en 2024 à TU-Munich [3] et la prisse de données à Chooz commencera à l’été 2026, en même temps que la thèse. Une première contribution portera sur l’acquisition des données sur site réacteur et leur analyse. Plus spécifiquement, l’étudiant(e) sera en charge de la caractérisation des détecteurs cryogéniques en CaWO4 déployés : stabilité, résolution en énergie, calibration et bruit de fond intrinsèque au cristal.

La question de la calibration à l’échelle sub-keV est un point crucial des expériences de CEvNS (et de matière noire). Or jusqu’à présent il était très difficile de générer des reculs nucléaires d’énergie connue pour caractériser la réponse des détecteurs. La méthode CRAB [4,5] répond à ce besoin en utilisant la réaction de capture de neutrons thermiques (énergie de 25 meV) sur les noyaux constituant le détecteur cryogénique. Le noyau composé résultant a une énergie d’excitation bien connue, l’énergie de séparation d’un neutron, comprise entre 5 et 8 MeV selon les isotopes. Dans le cas où il se désexcite en émettant un seul photon gamma, le noyau va reculer avec une énergie qui est aussi parfaitement connue car donnée par la cinématique à deux corps. Un pic de calibration, dans la gamme recherchée de quelques 100 eV, apparaît alors dans le spectre en énergie du détecteur cryogénique. Une première mesure réalisée, en 2022, avec un détecteur en CaWO4 de l’expérience NUCLEUS et une source de neutrons commerciale (252Cf) a permis de valider la méthode [6].

La deuxième partie de la thèse s’inscrit dans la phase « haute précision » de ce projet qui consiste à réaliser des mesures avec un faisceau pur de neutrons thermiques du réacteur TRIGA-Mark-II à Vienne (TU-Wien, Autriche). Le dispositif expérimental de calibration a été installé et caractérisé avec succès en 2025 [7]. Il consiste en un cryostat contenant les détecteurs cryogéniques à caractériser, entouré de larges cristaux de BaF2 pour une détection en coïncidence du recul nucléaire et du rayon gamma qui a induit ce recul. L’ensemble est placé directement sur l’axe du faisceau qui fournit un flux d’environ 450 n/cm2/s. Cette méthode de coïncidence réduira significativement le bruit de fond et permettra d’étendre la méthode CRAB à un plus large domaine d’énergie et aux matériaux constitutifs de la plupart des détecteurs cryogéniques. Nous attendons de ces mesures une caractérisation unique de la réponse des détecteurs cryogéniques, dans un domaine d’intérêt pour la recherche de la matière noire légère et la diffusion cohérente de neutrinos. En parallèle de la mesure de reculs nucléaires, l’installation d’une source de rayons X de basse énergie dans le cryostat permettra de générer des reculs électroniques ce qui mènera à la comparaison directe de la réponse du détecteur à des dépôts d’énergie sous le keV produits par des reculs nucléaires et d’électrons.

L’arrivée en thèse de l’étudiant(e) coïncidera avec la finalisation du programme de mesure sur les détecteurs en CaWO4 et Al2O3 de NUCLEUS et avec le début du programme de mesures sur le Ge (détecteur du projet TESSERACT) ainsi que sur le Si (détecteur du projet BULLKID).
La haute précision permettra également l’ouverture d’une fenêtre de sensibilité à des effets fins couplant de la physique nucléaire (temps de désexcitation du noyau) et de la physique du solide (temps de recul du noyau dans la matière, création de défauts cristallins lors du recul d’un noyau) [8].

L’étudiant(e) sera fortement impliqué dans tous les aspects de l’expérience : la simulation, l’analyse et l’interprétation des résultats obtenus.

ETAPES DU TRAVAIL:

L’étudiant(e) participera activement aux prises de données et à l’analyse des premiers résultats des détecteurs cryogéniques en CaWO4 de NUCLEUS à Chooz. Ce travail sera réalisé en collaboration avec les groupes des départements de physique nucléaire (DPhN), de physique des particules (DPhP) du CEA-Saclay et avec l’équipe de TU-Munich. Il commencera par une prise en main du code d’analyse CAIT pour les détecteurs cryogéniques. L’étudiant(e) étudiera plus spécifiquement les aspects de calibration via la réponse des détecteurs aux reculs électroniques issus de pulses de photons optiques injectés par fibres et de rayons X de fluorescence induits par les rayons cosmiques. Une fois cette calibration établie deux types de bruit de fond seront étudiés : les reculs nucléaires induits dans la gamme du keV par les neutrons rapides cosmogéniques et un bruit fond à basse énergie, appelé Low Energy Excess (LEE), intrinsèque au détecteur. La comparaison en les spectres expérimentaux et simulés du bruit de fond de neutrons rapides sera discutée à la lumière des différences entre réponses nucléaires et électroniques mesurées dans le projet CRAB. Les longues périodes de prises de données sur le site de Chooz seront mises à profit pour étudier l’évolution temporelle du bruit LEE. Ce travail se fera dans le cadre d’une collaboration en cours avec des spécialistes de la physique des matériaux de l'Institut des Sciences Appliquées et de la Simulation (CEA/ISAS) pour comprendre l’origine du LEE, qui reste une question ouverte majeure dans la communauté des détecteurs cryogéniques.

Les compétences d’analyse acquises sur NUCLEUS seront ensuite mises à profit pour les campagnes de mesures CRAB de haute précision prévues en 2027 auprès du réacteur TRIGA (TU-Wien) avec des détecteurs en Ge et Si.L’étudiant(e) sera fortement impliqué(e) dans la mise en place de l’expérience, dans la prise de données et l’analyse des résultats. Ces mesures prévues sur le Ge dans les canaux phonon et ionisation, ont le potentiel de lever l’ambiguïté actuelle sur le rendement d’ionisation des reculs nucléaires à basse énergie, qui sera un facteur déterminant de la sensibilité des expériences.

La haute précision de la calibration sera également exploitée pour étudier des effets fins de physique nucléaire et du solide (effets de timing et de création de défauts cristallins par le recul du noyau dans le détecteur). Cette étude sera réalisée en synergie avec les équipes de l’IRESNE et de l’ISAS au CEA qui nous fournissent des simulations détaillées des cascades gamma de désexcitation nucléaire et des simulations de dynamique moléculaire pour le recul des noyaux dans la matière.

A travers ce travail l’étudiant(e) aura une formation complète de physicien(ne) expérimentateur(trice) avec de fortes composantes de simulation et d’analyse de données, mais aussi un apprentissage des techniques de cryogénie dans le cadre de la mise en service des détecteurs de NUCLEUS et CRAB. Les contributions proposées mèneront à plusieurs publications durant la thèse avec une forte visibilité dans les communautés de la diffusion cohérente de neutrino et de la recherche de matière noire.

Au sein du CEA il (elle) bénéficiera du caractère exceptionnellement transverse de ce projet qui met déjà en interaction régulière les communautés de physique nucléaire, physique des particules et physique de la matière condensée.

COLLABORATIONS:

NUCLEUS: Allemagne (TU-Munich, MPP), Autriche (HEPHY, TU-Wien), Italie (INFN), France (CEA-Saclay).
CRAB: Allemagne (TU-Munich, MPP), Autriche (HEPHY, TU-Wien), Italie (INFN), France (CEA-Saclay, CNRS-IJCLab, CNRS-IP2I, CNRS-LPSC).

REFERENCES:

[1] NUCLEUS Collaboration, Exploring CE?NS with NUCLEUS at the Chooz nuclear power plant, The European Physical Journal C 79 (2019) 1018.
15, 48, 160, 174
[2] R. Strauss et al., Gram-scale cryogenic calorimeters for rare-event searches, Phys. Rev. D 96 (2017) 022009. 16, 18, 78, 174
[3] H. Abele et al., Particle background characterization and prediction for the NUCLEUS reactor CE?NS experiment, https://arxiv.org/abs/2509.03559
[4] L. Thulliez, D. Lhuillier et al. Calibration of nuclear recoils at the 100 eV scale using neutron capture, JINST 16 (2021) 07, P07032
(https://arxiv.org/abs/2011.13803)
[5]https://irfu.cea.fr/dphp/Phocea/Vie_des_labos/Ast/ast.php?id_ast=4970
[6] H. Abele et al., Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture, Phys. Rev. Lett. 130, 211802 (2023) (https://arxiv.org/abs/2211.03631)
[7] H.Abele et al., The CRAB facility at the TUWien TRIGA reactor: status and related physics program, (https://arxiv.org/abs/2505.15227)
[8] G. Soum-Sidikov et al., Study of collision and ?-cascade times following neutron-capture processes in cryogenic detectors Phys. Rev. D
108, 072009 (2023) (https://arxiv.org/abs/2305.10139)

Recherche d’axions dans l’expérience SuperDAWA avec aimants supraconducteurs et radiométrie hyperfréquence

Les axions sont des particules hypothétiques qui pourraient à la fois expliquer un problème fondamental de la physique des interactions fortes (la conservation de la symétrie CP en QCD) et constituer une part importante de la matière noire. Leur détection directe représente donc un enjeu majeur en physique fondamentale et en cosmologie.

L’expérience SuperDAWA, en cours de construction au CEA Saclay, repose sur l’utilisation d’aimants supraconducteurs et d’un radiomètre hyperfréquence placé dans un cryostat cryogénique. Ce dispositif permettra de convertir des axions potentiels en ondes radio mesurables, dont la fréquence est directement liée à leur masse.

Le travail de thèse proposé se partagera entre modélisation numérique et participation à l’expérience. L’étudiant·e développera un modèle complet intégrant les champs magnétiques, la propagation du signal radio et la réponse de l’électronique, avec une validation progressive par des mesures réelles. Une fois l’expérience opérationnelle, le·la doctorant·e participera aux campagnes de prises de données et à leur analyse.

Ce projet offrira l’opportunité unique de contribuer à une expérience de pointe en physique expérimentale, avec des retombées directes sur la recherche mondiale de matière noire.

Mesures de précision des oscillations de neutrinos et recherche de la violation de CP avec les expériences T2K et Hyper-Kamiokande

L’étude des oscillations de neutrinos est entrée dans une ère de précision, portée par des expériences à longue ligne de base comme T2K, qui comparent les signaux de neutrinos dans des détecteurs proches et lointains pour sonder des paramètres clés, dont une possible violation de la symétrie charge-parité (CPV). Détecter la CPV chez les neutrinos pourrait aider à expliquer l’asymétrie matière–antimatière de l’Univers. Les résultats de T2K publiés en 2020 ont fourni de premiers indices de CPV, mais restent limités par la statistique. Pour améliorer la sensibilité, T2K a connu d’importantes mises à niveau : remplacement de la partie la plus en amont de son détecteur proche par une nouvelle cible, augmentation de la puissance de l’accélérateur (jusqu’à 800 kW en 2025, avec un objectif de 1,3 MW d’ici 2030). La prochaine génération, l’expérience Hyper-Kamiokande (Hyper-K), qui débutera en 2028, réutilisera le faisceau et le détecteur proche de T2K, mais avec un nouveau détecteur lointain 8,4 fois plus grand que Super-Kamiokande, augmentant considérablement la statistique. Le groupe IRFU a joué un rôle clé dans la mise à niveau du détecteur proche et se concentre désormais sur l’analyse des données, essentielle pour maîtriser les incertitudes systématiques, cruciales à l’ère des hautes statistiques d’Hyper-K. Le travail de thèse proposé porte sur l’analyse des nouvelles données du détecteur proche : conception de nouvelles sélections d’échantillons tenant compte des protons et neutrons de faible impulsion du neutrino, et l'amélioration des modèles d’interaction neutrino–noyau afin d’optimiser la reconstruction de l’énergie. Le second objectif est de transférer ces améliorations à Hyper-K, afin d’orienter les futures analyses d’oscillation. L’étudiant contribuera également à la construction et à la calibration d’Hyper-K (tests d’électronique au CERN, installation au Japon).

Tester le modèle standard dans le secteur du quark top et du boson de Higgs de façon innovante avec plusieurs leptons dans l’expérience ATLAS au LHC

Le LHC collisionne des protons à 13.6 TeV, produisant un volume massif de données pour étudier des processus rares et rechercher de la nouvelle physique. La production d’un boson de Higgs en association avec un quark top unique (tH) dans l’état multi-leptonique (2 leptons de même signe ou 3 leptons chargés) est particulièrement prometteuse, mais complexe à analyser à cause des neutrinos non détectés et des leptons factices. Le processus tH est d’autant plus intéressant que sa très faible section efficace dans le Modèle Standard résulte d’une interférence destructive subtile entre les diagrammes faisant intervenir le couplage du Higgs au boson W et celui du Higgs au quark top. De ce fait, de petites déviations par rapport aux prédictions du Modèle Standard peuvent avoir un impact important sur son taux de production, faisant de tH une sonde sensible de nouvelle physique. La mesure de la section efficace tH reste délicate car les processus ttH et ttW ont des topologies proches et des sections efficaces beaucoup plus grandes, nécessitant une extraction simultanée pour obtenir un résultat fiable et évaluer correctement les corrélations entre signaux. ATLAS a observé un excès modéré de tH avec les données du Run 2 (2.8 s), rendant cruciale l’analyse rapide des données du Run 3 avec une prise en compte explicite de ces corrélations. La thèse exploitera des algorithmes d’intelligence artificielle basés sur des architectures transformers respectant certaines symétries fondamentales pour reconstruire la cinématique des événements et extraire des observables sensibles à la nature CP du couplage Higgs-top. Dans un second temps, une approche globale pourra traiter simultanément les processus ttW, ttZ, ttH, tH et 4 tops, à la recherche de couplages anomaux, y compris ceux violant la symétrie CP, dans le cadre de la théorie effective du Modèle Standard (SMEFT). Cette étude permettra la première mesure complète de tH dans le canal multi-lepton avec les données du Run 3 et ouvrira la voie à une analyse globale des processus rares et des couplages anomaux au LHC dans ce canal.

Désintégration du boson de Higgs en un boson Z et un photon et résolution temporelle du calorimètre électromagnétique de CMS

La thèse se concentre sur la physique du boson de Higgs à travers une de ses désintégrations les plus rares et encore non observées, celle en un boson Z et un photon (canal Zgamma). Cette désintégration complète le portrait du boson de Higgs déssiné jusqu'à présent et implique de manière unique tous les bosons neutres actuellement connus (Higgs, Z, photon), tout en étant sensible à éventuels processus de physique au délà du modèle standard. L'état final de l'analyse consiste en deux leptons de désintégration du boson Z (muons ou électrons, pour cette étude) et un photon. Évènements produits par d'autres processus du modèle standard et contenant deux leptons et un photon (ou des particules mal identifiées pour telles) constituent le bruit de fond de l'analyse. Avec toutes les données recueillies durant le Run2 du LHC (2015-2018) et le Run3 (2021-2026) il est possible de mettre en évidence cette désintégration, c'est-à-dire de l'observer avec une significance statistique de plus que trois déviations standard.

La thèse inclut aussi une partie instrumentale d'optimisation de la résolution en temps du calorimètre électromagnétique de CMS (ECAL). Bien que conçu pour des mesures de précision en énergie, le ECAL a aussi une excellente résolution sur le temps d'arrivée des photons et des électrons (environ 150 ps en collisions, 70 ps en faisceau test, avec conditions idéales). Dans un état final peuplé par des photons provenant de plusieurs dizaines d'évènements superposés (pileup), le temps d'arrivée d'un photon aide à vérifier sa compatibilité avec le vertex de désintégration du boson de Higgs. Cela sera crucial pendant la phase à haute luminosité du LHC (2029-), quand le nombre d'évenements superposé sera environ un facteur 3 plus grand qu'aujourd'hui. Une nouvelle électronique de lecture du ECAL est en train d'être produite et sera installée dans ECAL et CMS pendant la durée de la thèse. Elle permettra d'atteindre une résolution en temps de 30 ps pour photons et électrons de haute énergie. Cette performance a été mésurée en test sur faisceau d'un module du ECAL en conditions idéales (pas de champs magnétique, pas de matériel du trajectographe devant ECAL, pas de pileup): la thèse vise à dévélopper des algorithmes pour maintenir cette performance au sein de CMS.

Le travail de thèse est une continuation de l'analyse Z? en cours dans le groupe CMS du CEA Saclay et de l'analyse des performance en temps du ECAL, où le groupe de Saclay est le leader. Des outils d'analyse simples, robustes et performant, écrits en C++ moderne, basé sur le cadre d'analyse ROOT, permettent de comprendre et contribuer à toutes les étapes d'analyse, à partir de données brutes jusqu'aux résultats publiés. Le groupe CMS de Saclay a des responsabilités de premier plan dans CMS depuis sa construction, incluant une expertise approfondie en physique du Higgs, en reconstruction d'électrons et de photons, en simulation de détecteurs et en techniques d'apprentissage automatique et intelligence artificielle.

Des déplacements réguliers au CERN sont proposés pour présenter les résultas du travail de thèse à la collaboration CMS et pour participer aux tests en laboratoire prévus pour la nouvelle électronique d'ECAL, ainsi qu'à son installation.

Top