Optimisation de détecteurs de rayonnement gamma pour l’imagerie médicale. Tomographie par émission de positrons temps de vol

La tomographie par émission de positrons (TEP) est une technique d'imagerie médicale nucléaire largement utilisée en oncologie et en neurobiologie.
Nous vous proposons de contribuer au développement d’une technologie ambitieuse et brevetée : ClearMind. Le premier prototype est à nos laboratoires. Ce détecteur de photons gamma utilise un cristal monolithique de PbWO4, dans lequel sont produits des photons Cherenkov et de scintillation. Ces photons optiques sont convertis en électrons par une couche photo-électrique et multipliés dans une galette à microcanaux. Les signaux électriques induits sont amplifiés par des amplificateurs gigahertz et numérisés par les modules d'acquisition rapide SAMPIC. La face opposée du cristal sera équipée d'une matrice de photo-détecteur en silicium (SiPM).
Vous travaillerez dans un laboratoire d’instrumentation avancé dans un environnement de physique des particules.
Il s’agira d’abord d’optimiser les « composants » des détecteurs ClearMind, pour parvenir à des performances nominales. Nous travaillerons sur les cristaux scintillants, les interfaces optiques, les couches photo-électriques et les photo-déteceturs rapides associés, les électroniques de lectures.
Il s’agira ensuite de caractériser les performances des détecteurs prototypes sur nos bancs de mesure en développement continu.
Il s’agira enfin de confronter les propriétés mesurées de nos détecteurs à des simulations dédiées (Monté-Carlo sur logiciels Geant4/Gate).
Un effort particulier sera con-sacré au développement de cristaux scintillants ultra-rapides dans le contexte d’une collaboration européenne.

MESURE DE LA MASSE DU BOSON W AVEC LE DETECTEUR ATLAS AU LHC

L'objectif de la thèse est une mesure précise de la masse et de la largeur du boson W, en étudiant ses desintegrations leptoniques avec le détecteur ATLAS au LHC. L'analyse sera basée sur l'ensemble des données du Run 2 du LHC, et vise une précision sur la masse de 10 MeV.

Le candidat s'impliquera dans l'étude de l'alignement et de la calibration du spectromètre à muons d'ATLAS. L'IRFU a joué un rôle prépondérant dans la conception et la construction de cet instrument et s'implique fortement dans son exploitation scientifique. Il s'agira de combiner de manière optimale la mesure donnée par le spectromètre avec celle du détecteur interne d'ATLAS, à l'aide d'un modèle précis du champ magnétique et du positionnement relatif de ces systèmes, afin de reconstruire la cinématique des muons avec la précision requise pour la mesure.

La deuxième phase du projet consiste à améliorer la modélisation du processus de production et de désintégration des bosons W et d'optimiser l'analyse en tant que telle afin de minimiser l'incertitude finale de la mesure. Le résultat de la mesure sera combiné avec les autres mesures existantes, et interprété en termes de compatibilité avec la prédiction du Modèle Standard ou comme indication de la présence de nouvelle physique.

Top