Comportement de la matière sous compressions dynamiques isothermes: déplacement de la réactivité chimique ; synthèse de nouveaux matériaux métastables ; mécanismes de transition de phase.
La Cellule à Enclumes de Diamant équipée d’actuateurs piézoélectriques, ou d-CED, est un dispositif innovant permettant de générer des compressions et des décompressions dynamiques sur une large plage de taux de variation de pression. La d-CED permet ainsi de réaliser des sollicitations dynamiques finement contrôlées, avec des taux de (dé)compression pouvant varier sur plusieurs ordres de grandeur le long de chemins isothermes. Cela ouvre la voie à la constitution de bases de données de référence pour la validation de mécanismes microscopiques. Par ailleurs, les taux de compression ou de décompression peuvent être assimilés à des taux de chauffe ou de refroidissement ultra-rapides de l’échantillon, offrant la possibilité d’explorer, de manière très contrôlée, certains phénomènes encore débattus dans la littérature, tels que la stabilité maximale d’un solide au-delà de son point de fusion.
L’objectif de cette thèse est d’exploiter les nouvelles possibilités offertes par la d-CED pour démontrer de nouveaux phénomènes ou comprendre finement certains effets discutés dans la littérature, en réalisant des variations de température ultra-rapides. Une première application consistera en l’étude de la cinétique de nucléation des gaz rares (Ar, Ne, Kr) en fonction du taux de compression, et de comparer aux récentes mesures effectuées auprès du XFEL dans des jets cryogéniques. Un deuxième objectif sera d’étudier les changements chimiques, avec une première étude portant sur la modification de la réactivité du nitrométhane, explosif de référence. Un autre sujet d’étude concernera la synthèse de nouveaux composés moléculaires à partir de mélanges de fluides moléculaires denses (N2, H2, O2).
Etude expérimentale et simulation numérique des mécanismes de déformation et du comportement mécanique des alliages de zirconium après irradiation
La gaine des crayons combustibles des Réacteurs à Eau Pressurisée, fabriquée en alliages de zirconium, constitue la première barrière de confinement du combustible nucléaire. En réacteur, la gaine subit un dommage d’irradiation qui affecte ses propriétés mécaniques. Après leur séjour en réacteur, les crayons combustibles sont transportés et entreposés. Lors de ces différentes phases, le dommage d’irradiation dans la gaine est partiellement restauré conduisant à une nouvelle évolution des propriétés mécaniques du matériau. Toutes ces évolutions restent pour l’heure mal comprises.
L'objectif de ce travail de thèse est de mieux comprendre les mécanismes de déformation et le comportement mécanique après irradiation, et après restauration partielle, des alliages de zirconium. L’objectif opérationnel de cette étude est de mieux prédire le comportement des gaines après utilisation et ainsi garantir le bon confinement du combustible nucléaire et des produits de fission.
Dans ce but, des méthodes expérimentales originales seront mises en œuvre et des simulations numériques de pointe seront utilisées. Des irradiations aux ions seront réalisées afin de reproduire le dommage d’irradiation. Des traitements thermiques seront réalisés sur les échantillons après irradiation. Des échantillons seront ensuite tractionnés in situ, après recuit, dans un microscope électronique en transmission, à température ambiante ou en température. Les mécanismes observés à l’échelle nanométrique et en temps réel seront finalement simulés par dynamique des dislocations, aux mêmes échelles de temps et d’espace. Des simulations de dynamique des dislocations à très grande échelle seront également menée afin de déterminer le comportement monocristallin du matériau. En parallèle de cette étude à l’échelle nanométrique, une étude sera également menée à une échelle micrométrique. Des essais de nano-indentation et de compression de micro-piliers seront réalisés afin d’accéder au comportement mécanique après irradiation et recuit. Les résultats d’essais mécaniques seront confrontés aux simulations numériques grande échelle de dynamique des dislocations.
Cette étude permettra de mieux comprendre le comportement mécanique des alliages de zirconium après irradiation et recuit et ainsi de proposer des modèles de comportement prédictifs, basés sur les mécanismes physiques. A terme, ce travail contribuera à l’amélioration de la sureté lors du transport et de l’entreposage des assemblages combustibles usés.
Cinétiques de ségrégation et précipitation dans les alliages ferritiques sous irradiation : couplage des effets magnétiques, chimiques et élastiques
Les aciers ferritiques sont envisagés comme matériaux de structure dans les futurs réacteurs nucléaires à fission et à fusion. Or ces alliages ont des propriétés tout à fait originales, liées aux couplages entre les interactions chimiques, magnétiques et élastiques qui affectent à la fois leurs propriétés thermodynamiques, la diffusion des espèces chimiques et celle des défauts ponctuels du cristal. Le but de la thèse sera de modéliser à l’échelle atomique l’ensemble de ces effets et de les intégrer dans des simulations Monte Carlo pour modéliser les cinétiques de ségrégation et de précipitation sous irradiation, phénomènes qui peuvent dégrader leurs propriétés d’usage. L’approche atomique est indispensable pour ces matériaux soumis à une irradiation permanente, pour lesquelles les lois de la thermodynamique d’équilibre ne s’appliquent plus.
La candidate ou le candidat recherché(e) devra avoir une bonne formation en physique statistique ou en sciences des matériaux, et être attiré(e) par les simulations numériques et la programmation informatique. La thèse se déroulera au laboratoire de métallurgie physique du CEA Saclay (SRMP) dans un environnement de recherche bénéficiant d’une expérience reconnue en modélisation multi-échelles des matériaux, avec une quinzaine de thèses et de contrats post-doctoraux en cours sur ces thématiques.
Un stage de Master 2 sur le même sujet est proposé pour au printemps 2025 et est vivement recommandé.
Activation thermique du glissement des dislocations vis dans les métaux de symétrie cubique centrée
L'activation thermique du glissement des dislocations joue un rôle essentiel dans la déformation plastique des métaux de structures et donc dans le vieillissement de ceux-ci. Le cas des dislocations vis dans les métaux de symétrie cubique centrée constitue un archétype pour lequel il existe déjà de nombreuses données expérimentales auxquelles nous pouvons confronter les prédictions théoriques issues de la théorie statistique de Vineyard [1,2]. Cette théorie est essentielle car elle permet d'établir une transition d'échelle depuis les calculs atomistiques les plus fins [3] jusqu'aux échelles macroscopiques des tests de déformation.
Dans le cadre de cette proposition de thèse nous souhaitons tester à l'échelle atomique la théorie statistique de Vineyard en comparant les prédictions de la théorie avec des simulations de dynamique moléculaire [4]. Nos calculs préliminaires ont montré un désaccord notablement important tandis que la même comparaison pour la migration de défauts ponctuels tels que les lacunes ou les interstitiels montrait un bon accord. Si ces résultats sont confirmés il nous faudra établir une correction et mesurer l'impact de cette correction sur les prédictions théoriques associées aux essais de traction concernant les dislocations vis dans les métaux de symétrie cubique centrée. Nous accorderons une attention particulière au fer-alpha pour lequel nous disposons de nombreuses données expérimentales [5].
[1] Vineyard G.H., J. Phys. Chem. Solids 3, 121 (1957).
[2] Proville L., Rodney D., Marinica M-C., Nature Mater. 11, 845 (2012).
[3] Proville L., Ventelon L., Rodney D., Phys. Rev. B 87, 144106 (2013).
[4] Proville L., Choudhury A., Nature Mater. 23, 47 (2024).
[5] Caillard D., Acta Mater. 58, 3504 (2010).
Métrologie quasi in situ de couches fines et d’interfaces par photoémission X multi-énergies
Les dispositifs de nanoélectronique avancée et les technologies quantiques reposent sur des oxydes ultraminces et des interfaces spécifiques dont la composition chimique, la stœchiométrie et l’épaisseur doivent être maîtrisées avec une grande précision. Dans ce contexte, le LETI a fait l'acquisition du premier équipement de photoémission X (XPS–HAXPES)dédiés à la mesure en ligne de plaquettes 300 mm. Les caractéristiques uniques de cet équipement (analyse multi-énergie et résolu angulairement) ouvrent la voie à une métrologie chimique quasi in situ au plus proche des étapes procédés.
Cette thèse vise à développer des méthodologies XPS/HAXPES quantitatives, multi-énergie et en résolues en angle, appliquées à l’étude d’oxydes et d’oxynitrures ultraminces. Les travaux porteront sur la validation de la précision métrologique, la quantification des paramètres structuraux et chimiques, ainsi que sur l’élaboration de protocoles robustes permettant le transfert quasi in situ de couches sensibles entre équipements précédés (dépôt, gravure, …) et de caractérisation.
Les méthodologies développées seront appliquées à des cas d’intérêt industriel et scientifique majeur, notamment les empilements CMOS avancés et les jonctions Josephson pour dispositifs quantiques, où des barrières AlOx d’épaisseur inférieure à 2 nm jouent un rôle déterminant dans les performances des composants.
Ce projet de doctorat contribue directement au développement des technologies quantiques de nouvelle génération, de la photonique avancée et de la microélectronique à faible consommation énergétique, en améliorant la fiabilité, la stabilité et la maîtrise des matériaux à l’échelle nanométrique. La thèse sera réalisée dans un environnement scientifique de haut niveau, au sein d’un cadre collaboratif multi-partenaires.
Caractérisation avancée des défauts générés par les procédés technologiques pour l’imagerie infrarouge haute-performance
Cette thèse s’inscrit dans le domaine des détecteurs infrarouges refroidis. Le Laboratoire Infrarouge du CEA-LETI-MINATEC est spécialisé dans la conception et la fabrication de prototypes de caméras infrarouges, utilisées en défense, astronomie, surveillance environnementale et météorologie satellitaire.
Dans ce contexte d’imagerie haute-performance, il est crucial d’assurer une qualité optimale des détecteurs. Or, les procédés technologiques de fabrication peuvent introduire des défauts susceptibles de dégrader les performances des capteurs. La compréhension et la maîtrise de ces défauts sont essentielles pour accroître la fiabilité et optimiser les procédés.
L’objectif de la thèse est d’identifier et de caractériser précisément ces défauts à l’aide de techniques de pointe, rarement combinées, telles que la micro-diffraction de Laue et la nano-tomographie FIB-SEM, permettant une analyse structurelle à différentes échelles. En mettant en relation la nature et l’origine des défauts avec les procédés de fabrication et en quantifiant leur impact sur les performances, le ou la doctorant(e) contribuera directement à l’amélioration de la fiabilité et de l’efficacité des capteurs infrarouges de nouvelle génération.
Le/la doctorant(e) intègrera une équipe couvrant l’ensemble de la chaîne de fabrication des détecteurs et participera activement à l’élaboration (salle blanche LETI) et la caractérisation structurale (plateforme CEA-Grenoble, techniques avancées) des échantillons. Il/elle interviendra également dans la caractérisation électro-optique en partenariat avec le Laboratoire Imagerie infrarouge Refroidie (LIR), spécialisé dans l’analyse fine du matériau actif à des températures cryogéniques.
Mesure de la vitesse du son dans H2 et He constitutifs des intérieurs des géantes gazeuses
L'objectif de la thèse est d'étudier les mélanges hydrogène-hélium en phase fluide à haute pression et haute température par spectroscopie Raman et Brillouin. Les expériences seront effectuées en cellule a enclumes diamant sous chauffage laser permettant d’explorer un vaste domaine de pression et de température représentatif des intérieurs planétaires des géantes de gaz (1-300 GPa, 300-4000 K). La spectroscopie Raman sera utilisée pour sonder les changements chimiques susceptibles d’apparaître en conditions extrêmes. La spectroscopie Brillouin donnera accès à la vitesse du son adiabatique et aux équations d’état de ces systèmes en phase fluide. Ces données seront particulièrement utiles pour améliorer la modélisation des intérieurs de Jupiter et Saturne.
Mobilité des dislocations dans les alliages à haute entropie cubiques centrés
Les alliages à haute entropie sont des solutions solides monophasées multi-composants, tous présents en forte concentration. Cette classe de matériaux présente des améliorations significatives en termes de propriétés mécaniques par rapport aux alliages "classiques", et en particulier leur résistance élevée à haute température. Il est communément admis que les bonnes performances mécaniques proviennent des interactions des dislocations avec les éléments d'alliage, et qu’à haute température les impuretés ou dopants de nature interstitielle, comme l’oxygène, le carbone ou l’azote, jouent un rôle prépondérant. L’étude de la plasticité des alliages concentrés de structure cristalline cubique centrée dans le domaine des hautes températures constitue donc l’objectif de cette thèse. Les enjeux technologiques associés sont importants, ces alliages étant des matériaux de structure prometteurs, notamment pour les applications nucléaires où des températures de fonctionnement au-delà de l’ambiante sont visées.
Cette thèse s’attachera à comprendre et modéliser les mécanismes physiques contrôlant la tenue mécanique de ces alliages à haute température, en considérant différents alliages concentrés de complexité croissante, et en s’appuyant sur des outils de simulations atomiques, en particulier des codes de structure électronique ab initio. Nous nous focaliserons d’abord sur l’alliage binaire MoNb avant d’étendre aux alliages ternaires MoNbTi et MoNbTa, et d’étudier l’impact des impuretés d’oxygène sur le comportement plastique de ces alliages. Nous modéliserons les coeurs de dislocation et analyserons leur interaction avec les éléments substitutionnels et interstitiels afin de déterminer les barrières d’énergie contrôlant leur mobilité. Sur la base de ces résultats ab initio, nous développerons des modèles de durcissement permettant notamment de prédire la limite élastique en fonction de la température et de la composition de l’alliage.
Ce travail s’effectuera dans le cadre du projet DisMecHTRA financé par l’Agence Nationale de la Recherche, ce qui permettra en particulier de confronter nos modèles de durcissement aux données issues des expériences prévues dans le projet (essais mécaniques et microscopie électronique à transmission) et qui seront réalisées par les autres partenaires (CNRS Toulouse et Thiais). La thèse, hébergée au CEA Saclay, sera co-encadrée par une équipe du CEA Saclay et de MatéIS (CNRS, Lyon).
Impact des produits de fission et de la microstructure sur les propriétés thermophysiques du combustible (U,Pu)O2-x REP
En France, le combustible MOX (U,Pu)O2 est mis en œuvre dans certains Réacteurs à Eau Pressurisée (REP) exploités par EDF. Afin de conserver une production d’énergie à bas carbone, l’emploi généralisé dans un futur proche des combustibles MOX au sein du parc électronucléaire français est incontournable.
Durant leur irradiation en réacteurs, ces combustibles U1-yPuyO2-x voient l’ensemble de leurs propriétés et ainsi que leur microstructure évoluer drastiquement en raison notamment de l’accumulation plusieurs dizaines d’éléments plus légers créés par la fission du plutonium et appelés produits de fission (PF). En raison de la très forte radiotoxicité des combustibles MOx irradiés, des matériaux modèles, dits SIMMOx, ont été développés. Dans le cadre d’une thèse précédente, nous avons développé une voie de synthèse permettant d’obtenir des SIMMOX dopé jusqu’à 12 produits de fission avec microstructure reproduisant bien celle des combustibles MOX REP irradiés.
Afin de garantir la marge à la fusion des combustibles lors de leur irradiation, il est nécessaire de comprendre l’évolution de l’ensemble de leurs propriétés thermophysiques et thermodynamiques pendant l’irradiation. Ce travail de thèse se propose de mesurer ces propriétés dans un combustible MOX représentatif de celui actuellement exploité par EDF. Les propriétés d’intérêts seront notamment : la conductivité thermique, la capacité thermique et la température de fusion. Ces mesures seront effectuées au sein du JRC-Karlshrue (Allemagne) pendant un détachement d’environ 12 mois. Ensuite, les échantillons seront rapatriés au CEA Marcoule afin d’évaluer l’effet de la fusion sur la spéciation des actinides et PF, et sur les propriétés microstructurales du combustible MOX utilisé. En parallèle, la simulation des mesures de propriétés thermiques couplées à des calculs thermodynamiques (méthode CALPHAD) permettra d’identifier les mécanismes et équilibres entrant en jeux lors des mesures haute température.
Etude de la durabilité d'adsorbants à base de géopolymère utilisés pour la décontamination d'effluents radioactifs
Le retraitement du combustible usé génère des effluents radioactifs nécessitant un traitement adapté. Pour répondre aux enjeux industriels et réglementaires, le CEA développe des matériaux adsorbants à base de géopolymères, robustes, économiques et efficaces pour la capture du Cs-137 et du Sr-90. Leur performance peut être renforcée par l’intégration d’adsorbants sélectifs (zéolithes) et par des procédés innovants de mise en forme (impression 3D, billes, mousses) optimisés pour l’adsorption en colonne.
La durabilité de ces matériaux reste un point critique : leurs mécanismes de lixiviation et de vieillissement en colonne sont encore peu connus. La thèse portera sur l’étude de ces phénomènes, afin de comprendre l’impact de la chimie des effluents sur la stabilité et l’efficacité des géopolymères. Le travail comprendra la synthèse des matériaux, des essais de sorption en batch et en colonne, ainsi que l’utilisation d’outils de modélisation pour interpréter les mécanismes d’altération. Le défi scientifique est d’identifier les marqueurs physicochimiques clés de la dégradation du géopolymère dans les effluents liquides ciblés et de faire le lien avec les capacités de sorption en colonne.
Le/la doctorant(e) rejoindra le Laboratoire des Procédés Supercritiques et Décontamination (LPSD), reconnu pour son expertise en extraction d’ions sur support solide en colonne et en caractérisation d’adsorbants. Il/elle collaborera avec les spécialistes du CEA Marcoule et les équipes du laboratoire, et présentera régulièrement les avancées du projet au partenaire industriel. À l’issue de la thèse, le/la doctorant(e) aura acquis une expertise reconnue à l’interface entre matériaux, chimie et procédé d’adsorption en colonne. Elle ouvrira des débouchés variés : postes en R&D dans les secteurs du nucléaire, de la gestion des déchets et des matériaux fonctionnels ; poursuites académiques (post-doctorat, recherche, enseignement) ou encore contribution aux grands défis de l’énergie et de l’environnement.