Magnons topologiques dans les matériaux quantiques
La topologie est devenue un paradigme essentiel en matière condensée, permettant de classer les phases de la matière selon des propriétés invariantes sous des déformations continues. Les premières recherches dans ce domaine se sont essentiellement concentrées sur les structures de bandes électroniques, conduisant par exemple à la découverte des « isolants topologiques ». Cependant, ces concepts topologiques ne sont pas restreints seulement aux électrons (fermions) et ainsi, l'application de tels concepts aux bosons, en particulier les magnons, suscite un intérêt croissant. Les magnons, qui sont des excitations collectives dans les matériaux magnétiques, illustrent comment la topologie influence la dynamique magnétique et affecte le transport de chaleur et de spin. Des analogues d'isolants topologiques et de semi-métaux apparaissent dans leurs structures de bandes de magnons. Les magnons offrent ainsi une plateforme pour étudier l'interaction entre symétries magnétiques et topologie, examiner l'effet des interactions sur les bandes topologiques, et générer des courants de spin protégés aux interfaces. La recherche de matériaux contenant des magnons topologiques est donc cruciale, surtout pour les applications en magnonique, qui exploitent les ondes de spin pour le stockage et le traitement rapide des données.
Ce projet de thèse se consacre à explorer ces aspects topologiques dans des matériaux quantiques candidats à l’aide de techniques de diffusion de neutrons et de rayons X dans les grandes infrastructures de recherche (ILL, ESRF, SOLEIL), pour analyser la structure de bande des magnons à la recherche de caractéristiques topologiques, comme les points de Dirac ou de Weyl. Les résultats expérimentaux seront soutenus par des calculs théoriques des bandes magnoniques intégrant des concepts topologiques.
Études théoriques des phénomènes orbitroniques et de spin-orbite dans les hétérostructures comprenant des matériaux de van der Waals, des métaux et des oxydes
Ce thèse de doctorat vise à trouver les meilleures combinaisons inexplorées de métaux de transition, d'oxydes et de matériaux 2D (dichalcogénures de métaux de transition, aimants 2D, graphène...) pour aider à optimiser et à fournir les bases scientifiques des dispositifs de stockage et de mémoire spintroniques à haut rendement énergétique, basés sur les domaines émergents de la spin-orbitronique et de l'orbitronique. Cette dernière est un nouveau domaine de recherche fascinant qui exploite les courants orbitaux et leur interaction avec les courants de spin médiés par le couplage spin-orbite.
En utilisant de calculs ab initio combinés à une approche liaison fort et à la théorie de la réponse linéaire, nous examinerons le potentiel des hétérostructures susmentionnées non seulement pour les phénomènes spin-orbite tels que l'interaction Dzyaloshinskii-Moriya (DMI), l'anisotropie magnétique perpendiculaire (PMA) et l'interconversion spin-charge basée sur les effets Rashba et Rashba-Edelstein (REE), mais nous nous concentrerons également sur l'effet orbital Rashba-Edelstein (OREE). En outre, les mécanismes de contrôle de ces phénomènes par des stimuli externes (déformation, champs électriques et magnétiques externes) seront également étudiés. Ces études permettront de trouver des combinaisons de matériaux optimales pour assurer l'efficacité de la DMI, de la PMA et de l'interconversion spin-charge afin d'optimiser les dispositifs spintroniques et de contribuer ainsi de manière significative au développement d'une microélectronique durable.
Le projet de these sera basé sur une approche multi-échelle incluant des approches ab initio, liaison forte et atomistiques. Un candidat très motivé avec une bonne expérience en physique du solide, en théorie de la matière condensée et en simulations numériques est donc requis. Il/elle effectuera ses calculs sur les nœuds du cluster de calcul Spintec en utilisant des codes ab initio basés sur la théorie de la fonctionnelle de la densité (DFT) combinés à d'autres codes/outils de simulation. Les résultats obtenus seront analysés avec soin et pourront être publiés dans des revues scientifiques internationales. Une forte collaboration avec des laboratoires en France (CEA/LETI, Laboratoire Albert Fert (CNRS,Thales), Aix-Marseille Univ...) et à l'étranger (ICN2-Barcelone, PGI Forschungszentrum Jülich, Osaka University) est prévue.
Supraconductivité topologique et surface de Fermi dans les supraconducteurs à spin triplet
La supraconductivité topologique est devenue un sujet de recherche intense en raison de son potentiel pour des avancées majeures dans le domaine de l'information quantique. Les systèmes massifs représentent une possibilité prometteuse, avec des candidats principalement trouvés parmi les supraconducteurs non conventionnels, qui sont également des systèmes d'électrons fortement corrélés. À ce jour, seuls quelques composés candidats pour la supraconductivité topologique de volume existent, et ils sont principalement des supraconducteurs lourds à base d'uranium. L'UTe2 est l'un des candidats les plus prometteurs. Les propriétés topologiques des supraconducteurs dépendent crucialement de la topologie de la surface de Fermi.
Dans ce projet, nous souhaitons mettre en place une nouvelle technique (pour notre équipe) reposant sur un circuit oscillateur à diode tunnel. Cette technique est très sensible aux oscillations quantiques et est bien adaptée aux études sous champs magnétiques élevés et sous haute pression. Les premières expériences se concentrent sur le nouveau supraconducteur UTe2, dont la surface de Fermi n'est que partiellement connue. Des études ultérieures réviseront les propriétés topologiques des supraconducteurs ferromagnétiques UCoGe et URhGe.
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures
Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l’amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.
Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.
Magnétorésistances géantes pour la caractérisation locale de l’état magnétique de surface: vers des applications du type Contrôle Non-Destructif (CND)
Thèse Cifre dans le domaine du contrôle non destructif par utilisation de capteurs magnétiques en collaboration entre 3 partenaires :
-le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay
-le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
-l’entreprise CmPhy
La grande majorité des aciers de structure et de construction utilisés par l’industrie du transport, de l’énergie et du bâtiment sont ferromagnétiques. Ces aciers possèdent la propriété de s’aimanter sous l’effet d’un champ externe et de conserver un état magnétique lors de sa disparition.
Les propriétés mécaniques et la microstructure sont des marqueurs forts qui permettent d’anticiper l’état de dégradation de ces pièces en acier. Ces informations qui sont fondamentales en production comme en maintenance peuvent être lues de façon indirecte et non-destructive à travers l’observation du comportement magnétique.
Dans cette thèse, nous proposons de développer des capteurs magnétiques de type magnétorésistance géante (GMR) pour remonter à l’état magnétique de surface et indirectement aux contraintes résiduelles, à la microstructure et au niveau de dégradation.
L’utilisation de l’effet de magnétorésistance géante (GMR), basé sur l’électronique de spin permet de développer des capteurs magnétiques innovants, extrêmement sensibles, détectant des champs magnétiques de l’ordre du nT/vHz. Leur taille peut être submicronique ce qui les rends complètements adaptés à la caractérisation de surface. Leur sensibilité est telle que l’effet du champ magnétique terrestre est suffisant pour induire une réponse magnétique mesurable. Ceci permet d’envisager un CND magnétique allégé ne nécessitant pas d’inducteur pour la génération du champ.
Les deux applications principales associées à cette thèse seront:
• Détection de défauts surfaciques ou sous surfaciques (de l’ordre du mm).
• Détecter des variations micro structurelles locales, des contraintes surfaciques ou des déformations plastiques.
Plusieurs aspects pourront être traités pendant la thèse. Une partie intégration dont le but est d’aller jusqu’à la mise au point d’un démonstrateur (un intérêt pour ce démonstrateur a déjà été signifié par de grands groupes industriels tel que Framatome, EDF, DGA, SAFRAN, etc.). Des mesures sur des échantillons tests et en conditions réelles seront en amont réalisées pour valider la technique. En parallèle, un outil de modélisation pour l’analyse des signaux sera développé afin de comprendre et interpréter les résultats.
La Financement CIFRE proposé repose sur la collaboration de 2 laboratoires académiques (le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay, spécialiste des capteurs magnétiques et le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon, spécialiste des matériaux magnétiques et de leur applications) et une entreprise CmPhy, qui conçoit et fabrique des équipements d'analyses et de contrôles CND ainsi que des bancs de caractérisation magnétiques.
Films minces d’oxynitrures ferroélectriques perovskite à propriétés modulables
Les oxynitrures constituent une classe de composés en plein essor présentant un large panel de propriétés exploitables, en particulier pour les nouvelles technologies de production d'énergie décarbonées. En effet, l'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler la valeur de sa bande interdite ou d’y introduire des états électroniques additionnels et ainsi d'obtenir de nouvelles fonctionnalités et propriétés optiques. La production de films minces monocristallins d’oxynitrure, est cependant un défi important. Dans ce travail de thèse essentiellement expérimental, des films minces d’oxynitrures seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. On démarrera à partir du BaTiO3, dont la synthèse est bien maitrisée au laboratoire, pour réaliser des co-dopages d’azote et de métaux compensateurs de manière à conserver la neutralité de la maille élémentaire. Les structures résultantes seront caractérisées quant à leurs compositions chimiques, structures cristallines et propriétés ferroélectriques. Ces observations seront corrélées à leurs performance pour la photo-électrolyse de l’eau, qui permet de produire de l’hydrogène de manière vertueuse. Enfin, la tenue à la corrosion de ces nouveaux matériaux sera aussi étudiée.
Le (la) candidate abordera un vaste ensemble de techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, la lithographie en salle blanche, des mesures ferroélectriques et de photo-électrolyse de l’eau, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.
Expérimentation haut débit appliquée aux matériaux pour batteries
Utilisée depuis de nombreuses années dans le domaine de la pharmacie, l’expérimentation ou criblage haut débit (high throughput screening) apparait comme une méthode efficace pour conduire à la découverte accélérée de matériaux et comme un nouvel outil permettant d’élucider les relations composition-structure-propriétés fonctionnelles. Cette méthode est basée sur la synthèse combinatoire rapide d’un grand nombre d’échantillons de compositions différentes, combinée des caractérisations physico-chimiques rapides et automatisées par différentes techniques. Elle est utilement complétée par un traitement de données adapté.
Une méthodologie de ce type adaptée aux matériaux pour batteries lithium a été mise en place récemment au CEA Tech. Elle est basée d’une part sur la synthèse combinatoire de matériaux synthétisés par co-pulvérisation cathodique magnétron sous forme de couches minces, et d’autre part sur la réalisation de cartographies d’épaisseur (profilométrie), de composition élémentaire (EDS, LIBS), de structure (µ-DRX, Raman) et de propriétés électr(ochim)iques de bibliothèques de matériaux (~100) déposés sur un wafer. Une première phase a permis de mettre en place les principaux outils au travers de l’étude d’électrolytes solides amorphes de type Li(Si,P)ON pour batteries tout solide.
L’objectif de cette thèse est de poursuivre le développement de la méthode de manière à permettre l’étude de nouvelles classes de matériaux pour batteries : électrolytes cristallins ou vitrocéramiques pour Li ou Na, matériaux d’électrode oxydes, sulfures ou alliages métalliques. Il s’agira en particulier de tirer parti de nos nouveaux équipements de cartographie des propriétés physico-chimiques (µ-diffraction X, Laser-Induced Breakdown Spectroscopy) et d’établir une méthodologie de fabrication et de caractérisation de bibliothèques d’accumulateurs tout-solide en couches minces. Une partie de ce travail pourra également concerner le traitement des données et la programmation des moyens de caractérisation.
Ce travail sera l’objet de collaborations avec des chercheurs de l’ICMCB et du CENBG