Contribution des interfaces métal semi-conducteur au fonctionnement des photodiodes infrarouge de dernière génération

Cette thèse concerne le domaine des détecteurs infrarouges refroidis utilisés pour les thématiques astrophysiques. Dans ce domaine, le DPFT/SMTP (Laboratoire Infrarouge) du CEA-LETI-MINATEC travaille en étroite collaboration avec Lynred, leader mondial dans la production de plans focaux infrarouge de haute performance. Dans ce cadre, le laboratoire infrarouge développe de nouvelles générations de détecteurs infrarouges pour répondre aux besoins des futurs produits.
L’un des axes de développement actuels concerne la qualité de l’interface métal semi-conducteur de type p. Ces développements sont portés par l’augmentation de la température de fonctionnement des détecteurs, ainsi que par les exigences de performances très fortes pour les applications spatiales.
L’enjeux de cette thèse est de contribuer à une meilleure connaissance des espèces chimiques présentes à l’interface d’intérêt en fonction de différents types de traitement de surface et de faire le lien avec les propriétés électriques du contact réalisé.
Le/a candidat/e intégrera le laboratoire infrarouge qui comprend la totalité de la filière de réalisation des détecteurs. Il/elle réalisera ces échantillons grâce aux moyens technologiques disponibles au sein de la salle blanche du LETI, en collaboration avec les experts de la filière. Il aura également accès aux outils de caractérisation nécessaires à l’étude (SIMS, XPS, AFM…) disponibles sur la plateforme de nano-caractérisation (PFNC) ou en salle blanche du CEA. Enfin, il/elle sera amené/e à participer à la caractérisation électro-optique du matériau, en collaboration avec le Laboratoire Imagerie infrarouge Refroidie (LIR) spécialisé dans la caractérisation fine du matériau actif.

Stabilisation de dispositifs photovoltaïques Pérovskite par passivation avec des matériaux type Metal-Organic Frameworks

Les MOFs sont un type de matériaux poreux hybrides organiques-inorganiques avec des propriétés intéressantes du point de vue de la passivation des défauts de la pérovskite et de sa stabilité, notamment lumineuse. Par exemple :
• Effet direct des composants du MOF comme agents de passivation : Les ions métalliques et ligands organiques peuvent passiver des défauts à l’interface MOF/PK.
• Effet de « downconversion » du rayonnement incident : Certains métaux (comme l’europium) ou ligands (avec groupes aromatiques) peuvent absorber les rayonnements de haute énergie (violet / UV proche typiquement), puis réémettre cette énergie sous forme de rayonnement de moindre énergie ou la transmettre directement de manière non radiative à la pérovskite par résonance Förster (ou FRET). Ceci permet de protéger la pérovskite des photons de haute énergie, donc a priori d’améliorer la stabilité lumineuse, avec peu de pertes énergie.
Le travail de thèse concernera :
• l’intégration de MOF dans la couche pérovskite, en traitement de surface ou mélange de suspensions (à noter qu’un travail de stage préalable permettra de définir les voies les plus prometteuse dans le cadre de la thèse)
• Les études matériaux (notamment études avancées par XPS et UPS)
• La réalisation de dispositifs simple jonction puis tandem avec sous cellule silicium
• L’étude de durée de vie sous illumination (continue, cyclage) avec caractérisations associées (mesure électriques, photoluminescence, etc..)

Etude du couplage de la technique de criblage haut débit et de l’intelligence artificielle pour identifier les matériaux innovants des batteries du futur

Le CEA, depuis quelques années, a mis en place une activité de criblage haut débit expérimental des matériaux pour les accumulateurs au lithium, basé sur la synthèse combinatoire par pulvérisation cathodique et de différentes techniques de caractérisation haut débit sur des substrats de grandes tailles (typiquement 4 pouces). L’optimisation des compositions des matériaux se fait classiquement par l’analyse de plans d’expérience. Dans cette thèse, nous proposons de comparer les résultats de cette méthode classique avec les outils d’Intelligence Artificielle développés au LIST (IA symbolique) et à CTREG (IA connexioniste). L’objectif est de démontrer que l’IA peut avantageusement remplacer les plans d’expériences pour proposer un outil de criblage haut débit innovant et très performant.

Transfert de couches minces épitaxiées sur GaAs ou Ge sur un substrat en saphir ou silice pour les applications miroir à onde gravitationelles

Les ondes gravitationnelles ont été prévues par la théorie de la relativité générale, elle sont créés dans l'univers par des événements cosmiques extrêmes. Leur mesure sur terre dans de grands instruments tel que VIRGO en Italie est un chalenge en terme de sensibilité de la mesure. Ces instruments sont des interféromètres de grandes dimensions (plusieurs kilomètres), et toute la chaine optique doit minimiser le bruit pour être sensible à des modification infime de l'espace-temps. Les miroirs sont un des éléments clefs de la chaine optique.
On se propose dans cette thèse de réaliser un nouveau type de miroir permettant d'améliorer notablement la sensibilité d'un interféromètre. Ce miroir repose sur une séquence de couches minces épitaxiées avec des variations d'indice optique entre chacune d'elles. Ces couches minces doivent se trouver sur une base en silice ou en saphir. Une telle structure n'est pas réalisable par fabrication additive (ie par un dépôt des couches sur le substrat en saphir ou en silice), car les couches minces sont monocristallines, et la silice est amorphe quand le saphir à un paramètre de maille inadapté. Seul les techniques de report de couches minces permettent la réalisation d'une telle structure.
Cette thèse va étudier les technologies de report de couches minces pour mettre en œuvre une ou plusieurs options permettant le transfert des couches monocristallines du substrat donneur vers le substrat receveur. Chacune des étapes nécessaires sera étudiée, des mécanismes seront proposés pour expliquer les observations expérimentales. Des démonstrateurs seront réalisés et leurs performances optiques évaluées pour déterminer si elles sont en phase avec les besoins en terme de sensibilité.

Etude in situ de l’impact du champ électrique sur les propriétés des matériaux chalcogénures

Les matériaux chalcogénures (PCM, OTS, NL, TE, FESO …) sont à la base des concepts les plus innovants en micro—électronique allant des mémoires PCM aux nouveaux dispositifs neuromorphiques et spinorbitroniques (FESO, SOT-RAM, etc …). Une partie de leur fonctionnement repose sur une physique hors-équilibre induite par l’excitation électronique résultant de l’application d’un champ électrique intense. La thèse vise à mesurer expérimentalement sur des couches minces de chalcogénures les effets induits par le champ électrique intense sur la structure atomique et les propriétés électroniques du matériau avec une résolution temporelle femtoseconde (fs). Les conditions « in-operando » des dispositifs seront reproduites en utilisant une impulsion THz fs permettant de générer des champs électriques de l'ordre de quelques MV/cm. Les modifications induites seront alors sondées via différents méthodes de diagnostique in situ (spectroscopie optique ou diffraction x et/ou ARPES). Les résultats seront comparés à des simulations ab initio suivant une méthode à l’état de l’art développée avec l’Université de Liège. Au final la possibilité de prévoir la réponse des différents alliages chalcogénures aux échelles de temps fs sous champ extrême permettra d’optimiser la composition et les performances des matériaux (effet de switch e-, électromigration des espèces sous champ, etc …) tout en apportant une compréhension des mécanismes fondamentaux sous-jacents liant excitation électronique, évolution des propriétés sous champ et structure atomique de ces alliages.

Effet du champ de déformation élastique sur la formation sur les défauts d’irradiation formés dans des métaux purs

Dans le contexte actuel de prolongation de la durée de fonctionnement des centrales nucléaires actuelles, un important programme de surveillance des matériaux de structure est en place. Il est primordial pour contrôler le vieillissement des matériaux et garantir leurs propriétés mécaniques. Lors du fonctionnement de la centrale, les matériaux sont soumis à une irradiation. Lors de cette sollicitation, la structure interne des matériaux évolue et de nombreux défauts sont créés, ce qui dégrade les propriétés macroscopiques et peut conduire à une limitation de la durée de vie des pièces. Le travail proposé est une étude fondamentale menée sur des matériaux modèles, dans le but d'approfondir notre compréhension du comportement sous irradiation des alliages métalliques. Il permettra d’alimenter la modélisation multi-échelle des matériaux, couvrant les défauts créés à l'échelle nanométrique jusqu'au niveau des composants nucléaires.
L’irradiation des matériaux avec des particules de haute énergie comme les neutrons, les ions ou les électrons génère un grand nombre de défauts appelés défauts ponctuels (DP). Ces DP, mobiles, peuvent migrer et s’agglomérer sous forme d’amas pour former des objets bidimensionnels comme des boucles prismatiques ou tridimensionnels comme des cavités. Ils peuvent également être éliminés au niveau de puits de DP. Le système est alors le siège de flux de DP orientés en direction de ces puits. Ces flux sont à l’origine de phénomènes de précipitation ou de ségrégation d’atomes de soluté [1] [2]. La présence de DP agglomérés et de flux de DP modifie la microstructure et peut détériorer les propriétés physiques des matériaux irradiés. En particulier, la formation de boucles prismatiques dégrade les propriétés mécaniques des matériaux car elles peuvent ralentir les dislocations et générer de la fragilisation [3]. Dans une étude précédente, nous nous étions intéressés aux défauts lacunaires sous forme de cavités et avions étudié le facettage de défauts formés dans un métal faiblement anisotrope, l’aluminium, grâce à des irradiations in-situ dans un microscope électronique en transition (MET) à haute résolution (MET-HR).
Le travail proposé a pour ambition d’aller plus loin dans l’étude de l’impact des champs de déformation élastiques sur les morphologies des défauts d’irradiation. Plus précisément, il a pour objectif de réaliser une étude systématique sur différents métaux présentant des coefficients d’anisotropie différents. Nous avons choisi des métaux de référence de structure cubique centrée (CC) comme le fer ou le chrome et cubique à faces centrées (CFC) comme l’aluminium ou le cuivre présentant des coefficients d’anisotropie faibles ou élevés et pourra être étendue à des alliages de complexité supérieure comme les alliages à haute entropie (HEA).
Le travail sera principalement expérimental. Les métaux étudiés sont des monocristaux présentant la même orientation [100] pour s’affranchir de l’effet des surfaces sur la forme des objets formés. Ils seront irradiés aux ions lourds à des températures normalisées par rapport à leur température de fusion soit in-situ dans la plateforme Jannus Orsay, soit ex-situ dans la plateforme Jannus du CEA de Saclay [6]. Les boucles seront imagées par MET conventionnel ou STEM avec des microscopes de type FEI Tecnai et Jeol NeoARM. Ce dernier est un appareil de toute dernière génération, équipé d’un double correcteur d’aberration de sphéricité. Le travail sera réalisé dans le cadre du laboratoire de recherche commun (LRC) MAXIT regroupant notamment le SRMP et le LEM (CNRS/ONERA).
Le travail comportera également un volet numérique. Les effets d’anisotropie cristalline sur la morphologie des boucles prismatiques seront étudiés par l'utilisation d'un code de champ de phases [4]. L’arrangement spatial des boucles sera étudié en Monte-Carlo sur objet (OKMC) [5], comme cela a été fait récemment dans l’aluminium. Dans le cadre du stage, un seul de ces axes numériques sera abordé.

Le travail est réalisé à la suite d’un travail post-doctoral de 2 ans qui s’achèvera en décembre 2023 et qui a permis de développer des approches de type intelligence artificielle (IA) pour accélérer la détection automatique des défauts créés sous irradiation [7]. L’utilisation de ces approches permettra d’améliorer significativement la statistique et la précision des résultats.

Avantage pour l’étudiant: Le stagiaire évoluera dans un laboratoire constitué de 25 chercheurs et d’environ 25 étudiants chercheurs (doctorants, post-doctorants ou stagiaires) où une règne une forte émulation scientifique. Les activités sont à la fois expérimentales et de simulation. Il aura donc l’occasion d’interagir avec des personnes compétentes dans son sujet.

[1] M. Nastar, L. T. Belkacemi, E. Meslin, et M. Loyer-Prost, « Thermodynamic model for lattice point defect-mediated semi-coherent precipitation in alloys », Communications Materials, vol. 2, no 1, p. 1-11, mars 2021, doi: 10.1038/s43246-021-00136-z.
[2] L. T. Belkacemi, E. Meslin, B. Décamps, B. Radiguet, et J. Henry, « Radiation-induced bcc-fcc phase transformation in a Fe3%Ni alloy », Acta Materialia, vol. 161, p. 61-72, 2018, doi: https://doi.org/10.1016/j.actamat.2018.08.031.
[3] M. Lambrecht et al., « On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels », Journal of Nuclear Materials, vol. 406, no 1, p. 84-89, 2010, doi: http://dx.doi.org/10.1016/j.jnucmat.2010.05.020.
[4] A. Ruffini, Y. Le Bouar, et A. Finel, « Three-dimensional phase-field model of dislocations for a heterogeneous face-centered cubic crystal », Journal of the Mechanics and Physics of Solids, vol. 105, p. 95-115, août 2017, doi: 10.1016/j.jmps.2017.04.008.
[5] D. Carpentier, T. Jourdan, Y. Le Bouar, et M.-C. Marinica, « Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities », Acta Materialia, vol. 136, p. 323-334, sept. 2017, doi: 10.1016/j.actamat.2017.07.013.
[6] A. Gentils et C. Cabet, « Investigating radiation damage in nuclear energy materials using JANNuS multiple ion beams », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 447, p. 107-112, mai 2019, doi: 10.1016/j.nimb.2019.03.039.
[7] T. Bilyk, A. M. Goryaeva, E. Meslin, M.-C. Marinica, Quantification of radiation damage in high entropy alloys by deep learning approach, 2-7/10/2022, MMM2022, Baltimore, USA

Elaboration, caractérisation et modélisation de films minces à base d’oxydes (Mn,Co)3O4 appliquées aux revêtements contre la corrosion et à la spintronique

Les spinelles de métaux de transition apparaissent spontanément lors de la corrosion généralisée des aciers ou alliages en milieu aqueux ou gazeux à haute température. Ces phases spinelles de type AB2O4 forment une couche de corrosion continue et régissent de ce fait les processus de corrosion car elles régulent la conductivité et le transport de matière entre le matériau et le milieu. Ces spinelles sont aussi déposés volontairement comme revêtements de protection contre les phénomènes de dégradation. En particulier, le système spinelle Mn-Co-O est très prometteur en tant que couche conductrice protectrice sur l’acier inoxydable ferritique utilisé pour fabriquer des interconnexions dans les piles à combustibles à oxyde solide pour la production d’hydrogène vert. Le choix de la composition de ces phases spinelle détermine évidement les caractéristiques de protection des revêtements. Ces caractéristiques sont particulièrement délicates pour les matériaux des électrolyseurs à haute température car le transport électronique doit être optimal (électrolyse importante) mais ne doit pas s’accompagner de transport de matière (diffusion des cations faible).
Paradoxalement, les propriétés de transport des spinelles de métaux de transition sont en général mal connues. Les mesures sont faites sur des couches de corrosion ou des revêtements de compositions variables, de faibles cristallinités, de microstructures complexes et de surcroit de faibles épaisseurs. Par ailleurs, les spinelles montrent des propriétés magnétiques et de désordre cationique en fonction de la composition largement ignorés alors qu’elles ont un impact fort sur le transport. Ce sont précisément ces propriétés magnétiques et de transport qui présentent un intérêt majeur dans le domaine de la spintronique. Ainsi, la manipulation de la composition chimique de ces oxydes de structure spinelle (normale, inverse ou mixte) offre une large gamme de propriétés magnétiques (ferrimagnétique, antiferromagnétique) et électroniques (semi-métallique, semi-conducteur, isolant). En particulier CoMn2O4, est prédit avoir une configuration magnétique complexe [1], reliée principalement à l’arrangement des cations Co2+ et Mn3+ dans les sites interstitiels, qu’il convient d’analyser en détail. Ces études physiques requièrent, à l’inverse des couches de corrosion, la synthèse de couches minces de composition et de cristallinité bien maitrisées.
L’objectif de la thèse est d’une part d’apporter les connaissances structurales et physiques des oxydes modèles de composition chimique (Mn,Co)3O4 pour contribuer à l’élaboration de diagramme de phase (Mn-Co-O) et d’autre part de développer un modèle de transport électronique reposant sur la relation entre ordre/désordre – propriétés magnétiques et résistivité pour les spinelles (Mn,Co)3O4 et à terme sur l’ensemble des spinelles (Fe,Cr,Mn,Co)3O4. Les investigations seront conduites sur des couches minces de composition parfaitement maitrisées, de grande cristallinité et seront complétées par des simulations numériques. L’ensemble des travaux expérimentaux et de modélisation s’appuiera sur les résultats des études précédentes sur les couches simples de spinelles de composition (Ni,Fe,Cr)3O4 [2,3].
La thèse comportera plusieurs volets :
- Croissance de couches minces et multicouches par MBE (Molecular Beam Epitaxy) (J.-B. Moussy)
- Caractérisations spectroscopiques par XPS (X-ray photoemission spectroscopy) (F. Miserque)
- Caractérisations structurales fines par DRX et par absorption X (XMCD) (P. Vasconcelos)
- Modélisation des spectres XPS et d’absorption X, et modélisation atomistique (A. Chartier)
- Caractérisations magnétiques par magnétométrie SQUID/VSM et électriques (J.-B. Moussy)
[1] Systematic analysis of structural and magnetic properties of spinel CoB2O4 (B= Cr, Mn and Fe) compounds from their electronic structures, Debashish Das, Rajkumar Biswas and Subhradip Ghosh, Journal of Physics: Condensed Matter 28 (2016) 446001.
[2] Stoichiometry driven tuning of physical properties in epitaxial Fe3-xCrxO4 thin films, Pâmella Vasconcelos Borges Pinho, Alain Chartier, Denis Menut, Antoine Barbier, Myrtille O.J.Y. Hunault, Philippe Ohresser, Cécile Marcelot, Bénédicte Warot-Fonrose, Frédéric Miserque, Jean-Baptiste Moussy, Applied Surface Science 615 (2023) 156354.
[3] Elaboration, caractérisation et modélisation de films minces et multicouches à base d’oxydes (Ni,Fe,Cr)3O4 appliquées à la corrosion et à la spintronique, A. Simonnot, thèse en cours.

Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique

Au cours de l'irradiation en réacteur, les pastilles de combustible subissent une évolution partielle de leur microstructure. Pour des niveaux de combustion élevés, une subdivision des grains en grains plus petits dans les zones périphériques des pastilles combustible - appelée high burn-up structure(HBS) - est observée. Des changements similaires se produisent également dans les zones centrales des pastilles à température élevée. Ces évolutions résultent de la combinaison de plusieurs facteurs, notamment de la perte d'énergie des produits de fission. L'effet de cet endommagement pourrait varier en fonction de l'orientation cristalline et de la taille des grains.
L'objectif principal est donc de comprendre comment l'orientation cristalline et la taille des grains influencent l'endommagement causé par l'irradiation. Des expériences d'irradiation aux ions seront donc menées sur des échantillons d'UO2 monocristallins et polycristallins sur l’installation JANNUS Saclay. Des caractérisations in situ et ex situ par spectrométrie Raman, par rétrodiffusion Rutherford (RBS-C), par microscopies électronique à transmission et à balayage avec diffraction électronique rétrodiffusée (EBSD) seront mises en œuvre.

Simulation du pouvoir d'arrêt électronique pour les irradiations aux ions lourds

L’interaction entre les particules chargées et la matière a été au centre de l’attention des physiciens depuis plus de cent ans. Niels Bohr, Enrico Fermi et tant d’autres ont apporté leur contribution à ce domaine, fondamental pour la physique, mais aussi pour des domaines industriels comme le nucléaire, le photovoltaïque spatial, ou l’électronique. Aujourd’hui le temps des modèles a cédé la place aux calculs réalistes effectuées à l’aide de super-calculateurs.

Nous proposons d’utiliser notre code informatique de mécanique quantique dépendant du temps pour simuler précisément et sans apport de données expérimentales, la perte d’énergie des ions rapides dans la matière condensée. C’est ce qu’on appelle le pouvoir d’arrêt.

En effet, nous savons que les modèles empiriques échouent à prédire le comportement des ions lourds dans les matériaux contenant des éléments légers. L’apport de la simulation numérique sera cruciale pour nos collaborateurs expérimentateurs.

Modélisation atomistique d’alliages magnétiques métalliques : effets de température finie

Une modélisation précise des alliages magnétiques nécessite une description correcte des effets thermiques, tels que les vibrations du réseau, l’expansion thermique ainsi que les excitations et transitions magnétiques. Tous ces multiples effets sont corrélés les uns aux autres avec un impact important sur la stabilité des phases chimiques mais également sur de nombreux processus cinétiques. Un traitement approprié des différents degrés de liberté impliqués et de leur couplage est à l’heure actuelle un défi majeur pour la modélisation et les simulations à l’échelle atomique, en particulier pour la dépendance à la température et à la composition de l’alliage.

Dans cette thèse, nous chercherons à développer et à mettre en place une approche de modélisation de type multi-échelle pour prédire les propriétés thermodynamiques et cinétiques des alliages métalliques magnétiques en fonction de la température. Nous nous concentrerons sur les alliages à base de fer en tant que système de référence. Les propriétés visées comprennent les limites de phase chimiques et magnétiques, les concentrations de défauts ponctuels, les coefficients de diffusion atomique et la cinétique de précipitation.

Pour mener à bien cet objectif, nous effectuerons des calculs ab-initio basés sur la théorie de la fonctionnelle de la densité (DFT), des modèles de type liaisons fortes (TB) et d’interaction effective (EIM) ainsi que des simulations Monte Carlo. En plus de l'avancée méthodologique, les résultats de la thèse seront également très prometteurs au point de vue de la science des matériaux, en raison des multiples applications technologiques de ces alliages de fer, par exemple comme base des aciers.

Top