Modélisation sous-maille des transferts interfaciaux de masse et de chaleur appliqués à la condensation des essaims de bulles
Pour évaluer la sûreté des centrales nucléaires, le CEA développe et utilise des outils de simulation multi-échelles en thermohydraulique. L’application de la CFD aux écoulements diphasiques est limitée car elle nécessite de nombreux modèles difficiles à déterminer. Parmi nos autres ces outils, les simulations numériques directes (DNS) à interfaces résolues fournissent des données de référence inaccessibles par des moyens expérimentaux. C'est par exemple le cas des essaims de bulles, où les transferts de chaleur et de masse sont influencés par des effets collectifs complexes.
Afin de réduire le coût de ces simulations DNS, nous avons récemment développé une approche [1] qui montre des résultats prometteurs : elle consiste à coupler une résolution fine des transferts thermiques aux interfaces liquide-vapeur à un champ lointain calculé sur un maillage moins résolu. Pour élargir l'application de cette méthode à des cas plus industriels, il est nécessaire de prendre en compte les collisions entre bulles et d’adapter le modèle au changement de phase.
Nous proposons au cours de cette thèse de commencer par ce travail de modélisation physique et son implémentation en C++ dans notre code open-source de simulation TRUST/TrioCFD [2]. Ensuite, nous utiliserons cette nouvelle capacité pour réaliser une étude paramétrique et une analyse physique approfondie des phénomènes qui mèneraitmèneront, à terme, à une amélioration des modèles de transfert de chaleur dans les codes industriels.
[1] M. Grosso, G. Bois, A. Toutant, Thermal boundary layer modelling for heat flux prediction of bubbles at saturation: A priori analysis based on fully-resolved simulations, International Journal of Heat and Mass Transfer, Vol 222, 2024, https://doi.org/10.1016/j.ijheatmasstransfer.2023.124980
[2] Trio_CFD webpage : http://triocfd.cea.fr/recherche/modelisation-physique/two-phase-flows
Vers une méthode de caractérisation des propriétés électrocinétiques de particules dans l’eau à haute température
Dans le domaine de l’industrie et notamment de l’énergie, les circuits en eau liquide sont omniprésents. Les fluides, en interagissant avec les tuyauteries à base d’alliages métalliques, conduisent inévitablement à la formation de produits de corrosion. Des particules ainsi formées se déplacent dans les circuits sous l’effet d’un écoulement. En fonction des propriétés surfaciques physiques ou chimiques des parois, du milieu et des particules elles-mêmes, ces dernières peuvent s’agréger, se disperser, s’adsorber ou se déposer dans d’autres parties du circuit et conduire, par exemple, à des phénomènes d’encrassement et in fine à la perte de rendement des procédés industriels.
La prédiction du comportement des particules de petite taille (ordre de grandeur du µm) revêt donc un intérêt particulier. En effet, de par leur dimension, le comportement de ces dernières est régi par des forces d'origine électrique responsables de leur adhésion sur les surfaces. Les propriétés électrocinétiques et notamment le potentiel de surface pilotent ainsi le devenir de la particule et peuvent être définies par le biais du potentiel zêta. Cette grandeur caractérise un couple solide/solution et prend en considération à la fois la particule et ses propriétés chimiques de surface ainsi que la solution dans laquelle se trouve la particule.
Si la caractérisation du potentiel zêta à température ambiante est assez répandue, sa détermination à haute température se cantonne aujourd’hui, à quelques exemples (thèses de C. Cherpin 2022 [1] et de M. Barale 2006 [2], les études de VTT [3] et celle d’EDF avec l’université de Besançon 2002 [4] ainsi que le brevet de l’EPRI 1994 [5]). Le CEA (LC2R) a développé un moyen de mesure innovant en cours de brevetage pour explorer des techniques expérimentales peu développées et basées sur des hypothèses théoriques à approfondir.
A travers des approches multi-physique (écoulement, température, chimie, électrochimie, etc.) et multi-échelle (particules microscopiques influant sur un état macroscopique), l’objectif de la thèse est donc de réaliser les mesures des propriétés de surface de particules dans l’eau à haute température en fonction des conditions physico-chimiques (pH, RedOx et température), d’adapter les modèles existants ou en proposer de nouveaux puis de les valider avec les données expérimentales.
Les données ainsi obtenues ont vocation à alimenter les codes de simulation afin de mieux appréhender et maîtriser le vieillissement des circuits.
[1] C. Cherpin, PhD, 2022, Modelling the behaviour of colloidal corrosion products in the primary circuit of Pressurized Water Reactors
[2] M. Barale, PhD, 2006, Etude du comportement des particules colloïdales dans les conditions physico-chimiques du circuit primaire des réacteurs à eau sous pression
[3] E. Velin, Master’s Thesis, 2013, The effect of Temperature on the Zeta Potential of Magnetite Particles in Ammonia, Morpholine and Ethanolamine Solutions
Effets des produits de fission et de la microstructure sur les mécanismes d’oxydation des combustibles (U,Pu)O2
Dans un souci d’économie des ressources en uranium et de stabilisation de son inventaire en plutonium, la France étudie la possibilité de généraliser l’emploi des combustibles à base d’oxyde mixte d’uranium et de plutonium (MOX) au sein de son parc électronucléaire. Ce scénario impliquerait de faire évoluer l’outil industriel existant pour permettre le traitement des assemblages de MOX irradiés à cadence industrielle, et de rendre ainsi possible le multi-recyclage du plutonium. Relever ce défi nécessite le développement de procédés innovants, dont les bases scientifiques sont à construire.
L’oxydation des MOX irradiés via un traitement thermique oxydant pourrait permettre de lever l’un des verrous technologiques identifiés, qui réside dans la séparation du combustible de sa gaine métallique en amont de l’étape de dissolution. Il n’existe toutefois à l’heure actuelle que peu de données sur l’oxydation des oxydes (U,Pu)O2 et encore moins sur l’impact des produits de fission et des propriétés microstructurales. L’objectif de cette thèse est de contribuer à combler ces lacunes. Pour cela l’étudiant(e) retenu(e) étudiera des échantillons (U,Pu)O2 présentant une microstructure identique aux combustibles MOX industriels ainsi que des échantillons (U,Pu)O2 dopés en produits de fission, qui simulent les combustibles irradiés comme montré par une thèse en cours dans le laboratoire. Les travaux expérimentaux s’appuieront majoritairement sur la réalisation d’expérimentations d’oxydation en température couplées à des analyses in situ et multi-échelle utilisant des techniques de laboratoire et le rayonnement synchrotron. Ces résultats permettront d’obtenir une description phénoménologique de l’impact des produits de fissions, de la pO2, de la température et de la durée du traitement thermique sur les mécanismes d’oxydation des combustibles MOX irradiés.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales. Ces compétences lui ouvriront de nombreuses perspectives professionnelles tant dans la recherche académique qu’en R&D industrielle, que ce soit dans le secteur du nucléaire que dans d’autre domaines.
Expérimentation haut débit appliquée aux matériaux pour batteries
Utilisée depuis de nombreuses années dans le domaine de la pharmacie, l’expérimentation ou criblage haut débit (high throughput screening) apparait comme une méthode efficace pour conduire à la découverte accélérée de matériaux et comme un nouvel outil permettant d’élucider les relations composition-structure-propriétés fonctionnelles. Cette méthode est basée sur la synthèse combinatoire rapide d’un grand nombre d’échantillons de compositions différentes, combinée des caractérisations physico-chimiques rapides et automatisées par différentes techniques. Elle est utilement complétée par un traitement de données adapté.
Une méthodologie de ce type adaptée aux matériaux pour batteries lithium a été mise en place récemment au CEA Tech. Elle est basée d’une part sur la synthèse combinatoire de matériaux synthétisés par co-pulvérisation cathodique magnétron sous forme de couches minces, et d’autre part sur la réalisation de cartographies d’épaisseur (profilométrie), de composition élémentaire (EDS, LIBS), de structure (µ-DRX, Raman) et de propriétés électr(ochim)iques de bibliothèques de matériaux (~100) déposés sur un wafer. Une première phase a permis de mettre en place les principaux outils au travers de l’étude d’électrolytes solides amorphes de type Li(Si,P)ON pour batteries tout solide.
L’objectif de cette thèse est de poursuivre le développement de la méthode de manière à permettre l’étude de nouvelles classes de matériaux pour batteries : électrolytes cristallins ou vitrocéramiques pour Li ou Na, matériaux d’électrode oxydes, sulfures ou alliages métalliques. Il s’agira en particulier de tirer parti de nos nouveaux équipements de cartographie des propriétés physico-chimiques (µ-diffraction X, Laser-Induced Breakdown Spectroscopy) et d’établir une méthodologie de fabrication et de caractérisation de bibliothèques d’accumulateurs tout-solide en couches minces. Une partie de ce travail pourra également concerner le traitement des données et la programmation des moyens de caractérisation.
Ce travail sera l’objet de collaborations avec des chercheurs de l’ICMCB et du CENBG
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures
Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l’amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.
Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.
Elaboration, caractérisation et modélisation de films minces à base d’oxydes (Mn,Co)3O4 appliquées aux revêtements contre la corrosion et à la spintronique
Les spinelles de métaux de transition apparaissent spontanément lors de la corrosion généralisée des aciers ou alliages en milieu aqueux ou gazeux à haute température. Ces phases spinelles de type AB2O4 forment une couche de corrosion continue et régissent de ce fait les processus de corrosion car elles régulent la conductivité et le transport de matière entre le matériau et le milieu. Ces spinelles sont aussi déposés volontairement comme revêtements de protection contre les phénomènes de dégradation. En particulier, le système spinelle Mn-Co-O est très prometteur en tant que couche conductrice protectrice sur l’acier inoxydable ferritique utilisé pour fabriquer des interconnexions dans les piles à combustibles à oxyde solide pour la production d’hydrogène vert. Le choix de la composition de ces phases spinelle détermine évidement les caractéristiques de protection des revêtements. Ces caractéristiques sont particulièrement délicates pour les matériaux des électrolyseurs à haute température car le transport électronique doit être optimal (électrolyse importante) mais ne doit pas s’accompagner de transport de matière (diffusion des cations faible).
Paradoxalement, les propriétés de transport des spinelles de métaux de transition sont en général mal connues. Les mesures sont faites sur des couches de corrosion ou des revêtements de compositions variables, de faibles cristallinités, de microstructures complexes et de surcroit de faibles épaisseurs. Par ailleurs, les spinelles montrent des propriétés magnétiques et de désordre cationique en fonction de la composition largement ignorés alors qu’elles ont un impact fort sur le transport. Ce sont précisément ces propriétés magnétiques et de transport qui présentent un intérêt majeur dans le domaine de la spintronique. Ainsi, la manipulation de la composition chimique de ces oxydes de structure spinelle (normale, inverse ou mixte) offre une large gamme de propriétés magnétiques (ferrimagnétique, antiferromagnétique) et électroniques (semi-métallique, semi-conducteur, isolant). En particulier CoMn2O4, est prédit avoir une configuration magnétique complexe [1], reliée principalement à l’arrangement des cations Co2+ et Mn3+ dans les sites interstitiels, qu’il convient d’analyser en détail. Ces études physiques requièrent, à l’inverse des couches de corrosion, la synthèse de couches minces de composition et de cristallinité bien maitrisées.
L’objectif de la thèse est d’une part d’apporter les connaissances structurales et physiques des oxydes modèles de composition chimique (Mn,Co)3O4 pour contribuer à l’élaboration de diagramme de phase (Mn-Co-O) et d’autre part de développer un modèle de transport électronique reposant sur la relation entre ordre/désordre – propriétés magnétiques et résistivité pour les spinelles (Mn,Co)3O4 et à terme sur l’ensemble des spinelles (Fe,Cr,Mn,Co)3O4. Les investigations seront conduites sur des couches minces de composition parfaitement maitrisées, de grande cristallinité et seront complétées par des simulations numériques. L’ensemble des travaux expérimentaux et de modélisation s’appuiera sur les résultats des études précédentes sur les couches simples de spinelles de composition (Ni,Fe,Cr)3O4 [2,3].
La thèse comportera plusieurs volets :
- Croissance de couches minces et multicouches par MBE (Molecular Beam Epitaxy) (J.-B. Moussy)
- Caractérisations spectroscopiques par XPS (X-ray photoemission spectroscopy) (F. Miserque)
- Caractérisations structurales fines par DRX et par absorption X (XMCD) (P. Vasconcelos)
- Modélisation des spectres XPS et d’absorption X, et modélisation atomistique (A. Chartier)
- Caractérisations magnétiques par magnétométrie SQUID/VSM et électriques (J.-B. Moussy)
[1] Systematic analysis of structural and magnetic properties of spinel CoB2O4 (B= Cr, Mn and Fe) compounds from their electronic structures, Debashish Das, Rajkumar Biswas and Subhradip Ghosh, Journal of Physics: Condensed Matter 28 (2016) 446001.
[2] Stoichiometry driven tuning of physical properties in epitaxial Fe3-xCrxO4 thin films, Pâmella Vasconcelos Borges Pinho, Alain Chartier, Denis Menut, Antoine Barbier, Myrtille O.J.Y. Hunault, Philippe Ohresser, Cécile Marcelot, Bénédicte Warot-Fonrose, Frédéric Miserque, Jean-Baptiste Moussy, Applied Surface Science 615 (2023) 156354.
[3] Elaboration, caractérisation et modélisation de films minces et multicouches à base d’oxydes (Ni,Fe,Cr)3O4 appliquées à la corrosion et à la spintronique, A. Simonnot, thèse en cours.
Solveur Intégrodifférentiel HPC Parallèle pour la Dynamique des Dislocations
Contexte : La compréhension du comportement des métaux à forts taux de déformation [4] (entre 104 et 108 s-1) représente un défi scientifique et technologique considérable. Cette déformation irréversible (plastique) est due à la présence de défauts linéaires d'alignement cristallin : les dislocations, qui interagissent via le champ élastique à longue portée et par interactions de contact.
Actuellement, le comportement des métaux à forts taux de déformation ne sont accessibles expérimentalement que par chocs laser. D’où la nécessité d’un outil de simulation. Deux grands types d’approches sont possibles : la dynamique moléculaire, et les simulations élastodynamiques. Cette thèse s’inscrit dans le second type d’approche, capitalisant sur nos travaux récents [1, 2] qui ont permis les premières simulations numériques de l’équation de Peierls-Nabarro Dynamique (PND) [5]. Celle-ci décrit des phénomènes intervenant à l’échelle de la dislocation.
PND est une équation intégrodifférentielle non-linéaire qui présente une double difficulté : la non-localité en temps et en espace des opérateurs. Nous l’avons simulée pour la première fois grâce à une stratégie numérique efficace [1], issue de [6]. Mais la nature mono-processeur de son implantation actuelle constitue un verrou, limitant fortement la taille du système et l’étude de son comportement en temps long.
Sujet de thèse : Les objectifs de cette thèse sont de deux natures :
- Numérique. Sur la base algorithmique développée dans [1], implémenter un solveur HPC (Calcul Haute Performance) parallélisé en espace et en temps, avec mémoire distribuée.
- Physique. Grâce au code développé, éclaircir des points cruciaux relatifs à la phénoménologie des dislocations en régime dynamique rapide. L’exploitation des résultats numériques requerra des techniques de traitement de données et de statistiques - potentiellement assistées par de l’IA.
En fonction de l’avancement, il sera possible d’appliquer la méthode numérique développée aux phénomènes de fissuration dynamique [3].
Profil du candidat : Le sujet de thèse proposé est pluridisciplinaire, à la croisée des chemins entre simulation numérique, physique des dislocations et de la propagation de fissures, et traitement statistique. Le candidat devra d’abord posséder une solide formation en calcul scientifique appliqué aux équations aux dérivées partielles et un gout prononcé pour les applications physiques. La maîtrise du C++, avec des compétences en OpenMP et MPI seraient fortement appréciées. Des connaissances en mécanique des milieux continus seraient aussi vu comme un plus.
La thèse se déroulera au Département d'Etudes des Combustibles (Institut IRESNE, CEA/DES, centre de Cadarache), avec des déplacements réguliers en région parisienne pour la collaboration avec le CEA/DAM et le CEA/DRF.
[1] Pellegrini, Josien, Shock-driven motion and self-organization of dislocations in the dynamical Peierls model, soumis.
[2] Josien, Etude mathématique et numérique de quelques modèles multi-échelles issus de la mécanique des matériaux. Thèse. (2018).
[3] Geubelle, Rice. J. of the Mech. and Phys. of Sol., 43(11), 1791-1824. (1995).
[4] Remington et coll., Metall. Mat. Trans. A 35, 2587 (2004).
[5] Pellegrini, Phys. Rev. B, 81, 2, 024101, (2010).
[6] Lubich & Schädle. SIAM J. on Sci. Comp. 24(1), 161-182. (2002).
De l’Angström au micron : un modèle d’évolution microstructurale du combustible nucléaire dont les paramètres sont calculés à l’échelle atomique
La maîtrise du comportement des gaz de fission dans le combustible nucléaire (oxyde d’uranium) est un enjeu industriel important puisque leur relâchement ou leur précipitation limite l'utilisation du combustible à forts taux de combustion. Or ces phénomènes sont fortement influencés par l’évolution microstructurale du matériau aux défauts générés par l’irradiation (création de défauts ponctuels, agrégations de ceux-ci en cavités et bulles de gaz ou en boucles ou lignes de dislocation…). La dynamique d’amas (DA) est un modèle de type cinétique chimique permettant de décrire la nucléation/croissance des amas de défauts, leur contenu en gaz et le relâchement de celui-ci. Le modèle utilisé est paramétré à partir de données de base calculées à diverses échelles (ab initio, potentiels empiriques, Monte Carlo). Ce modèle rend déjà compte d’expériences de recuit d’UO2 implanté en atomes de gaz de fission et a mis en évidence le fort impact des défauts d’irradiation sur le relâchement gazeux. L’objectif de la thèse est d’une part d’améliorer le modèle et ses paramètres d’entrée, notamment le taux de création de défauts d’irradiation, et d’autre part d’étendre son domaine de validation en le confrontant à de nombreuses expériences issues de thèses récemment soutenues au département (mesure de relâchement gazeux par recuit d’échantillons implantés via un accélérateur d’ions, observation de cavités, bulles de gaz et boucles de dislocation par microscopie électronique à transmission, caractérisation du dommage par spectrométrie d’annihilation de positons). Le candidat sera donc amené à faire évoluer certains des sous-modèles constitutifs de la DA, interpréter et simuler l’ensemble des expériences disponibles. En parallèle cela permettra d’affiner la paramétrisation du modèle.
Ce sujet de modélisation présente l’intérêt pour le candidat d’articuler à une dimension “théorique” (amélioration du modèle), ainsi que de physique numérique (simulation en Dynamique Moléculaire de cascades de déplacements) une dimension “expérimentale” (interprétation d’expériences déjà réalisées, voire conception et suivi de nouvelles expériences). Ainsi, l’approche d’un ensemble varié de techniques d’observation et de mesure ouvriront au candidat le monde de la physique expérimentale et complèteront son profil. Le candidat aura également à animer des collaborations dans le but d’analyser les données expérimentales, de développer l’outil de calcul ou de spécifier des calculs atomistiques complémentaires. Il pourra aussi bénéficier d’un environnement de collaboration académique.
Ce travail offre une position centrale et un point de vue synthétique sur la physique du combustible en irradiation. Il vous permettra de contribuer au développement de la physique numérique appliquée à une démarche multiéchelle de modélisation. Vous découvrirez en quoi des outils de simulation basés sur les données microscopiques les plus fondamentales obtenues par le calcul atomistique permettent de traiter et expliquer des situations pratiques.
Pour aller plus loin :
Skorek (2013). Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des gaz de fission dans le dioxyde d’uranium. Univ. Aix-Marseille. http://www.theses.fr/2013AIXM4376
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.
Emission TeraHertz dans des puits quantiques topologiques HgTe/CdTe
Les sources de lumières cohérentes dans le domaine TeraHertz sont aujourd’hui inexistantes. Le graphène a été proposé pour réaliser de telles sources en utilisant les transitions entre niveaux de Landau sous champ magnétique mais l’équidistance énergétique entre ces niveaux ne permet pas d’écarter les recombinaisons non-radiatives de type Auger. Une nouvelle classe de matériaux, les isolants topologiques, permet de contourner ce problème en modifiant la répartition de ces niveaux de Landau par ouverture d’un gap, tout en conservant un système électronique de Dirac. HgTe/CdTe fait partie de ces isolants topologiques avec des mises en évidence expérimentales très claires de ces effets et des propriétés de transport électronique uniques. Nous proposons de réaliser des puits quantiques HgTe/CdTe en se plaçant au voisinage de la transition topologique. Nous avons récemment démontré expérimentalement l’émission Terahertz à partir de transitions de Landau avec un simple puits quantique. La problématique de la thèse consiste à optimiser l’épitaxie de ce système HgTe/CdTe et réaliser des empilements à multiples puits de façon à augmenter le gain. Ces multipuits devront être placés dans une cavité optique adaptée, à base de miroirs métalliques. Les électrons de Dirac devront également être polarisés par effet de grille pour ajuster les positions énergétiques des niveaux de Landau et contrôler leur population. Les procédés micro-électroniques seront employés pour y parvenir. Enfin, les propriétés d’émission TeraHertz seront déterminées précisément par spectroscopie magnéto-optique.
L’ensemble du travail de thèse conduira à préciser le potentiel de ce nouveau type de matériau pour des applications aux lasers TeraHertz et si possible à en faire une première démonstration.
Conception théorique de systèmes quasi-atomiques dans la bande interdite de semi-conducteurs/isolants pour des applications quantiques
La multiplication d’applications à température ambiante comme l’émission de photons uniques du centre NV (lacune-azote) chargé négativement dans le diamant a renouvelé l’intérêt pour la recherche de matériaux ayant un système quasi-atomique (QAS, quasi-atomique système) analogue à celui du centre NV, principalement caractérisé par la présence de niveaux de défauts bien localisés dans la bande interdite et occupés par des électrons conduisant à des état de spin élevés. Dans ce travail de doctorat, des méthodes théoriques seront utilisées pour concevoir de nouveaux QASs analogues au centre de NV ainsi que, dans des QAS sélectionnés, pour prédire les états de charge et explorer l’effet de la proximité de la surface sur la stabilité thermodynamique et sur la structure de l’état de spins. Les objectifs sont de concevoir de nouveaux QAS; prédire les états de charge des QAS sélectionnés dans le matériau en volume; étudier les changements dans l’état de charge apportés par la proximité de la surface; étendre le modèle de Hubbard utilisé pour calculer les états excités et tenir compte de l’interaction électron-réseau dans le calcul des états excités; Étudier l’effet de la présence d’états de niveaux profonds dans la bande interdite sur le transport des électrons et des phonons. La méthodologie développée au LSI pour concevoir de nouveaux QASs avec des états de spin élevés sera exploitée et de nouveaux systèmes analogues au centre NV seront recherchées. La théorie de la densité fonctionnelle (DFT) et un modèle de Hubbard développé au LSI seront les principaux outils de ce doctorat.