Stimulation magnéto-mécanique pour la destruction sélective de cellules cancéreuses de pancréas tout en épargnant les cellules saines.

Une nouvelle approche pour détruire les cellules cancéreuses est développée en collaboration entre le laboratoire de biologie BIOMICS et le laboratoire de magnétisme SPINTEC, tous deux au sein de l’IRIG. Cette méthode utilise des particules magnétiques dispersées parmi les cellules cancéreuses, mises en vibration à basse fréquence (1-20 Hz) par un champ magnétique rotatif. Ces vibrations induisent un stress mécanique sur les cellules, déclenchant leur mort (apoptose) de manière contrôlée.
L’effet a été démontré in vitro sur divers types de cellules cancéreuses (gliome, pancréas, rein) en culture 2D, ainsi que sur des sphéroïdes 3D (tumoroïdes) de cellules cancéreuses pancréatiques et des organoïdes de cellules saines. Les modèles 3D, plus proches des tissus biologiques réels, facilitent la transition vers des études in vivo et réduisent le recours aux modèles animaux. Les premiers résultats montrent que les cellules cancéreuses pancréatiques ont une plus grande affinité pour les particules magnétiques et sont plus sensibles au stress mécanique que les cellules saines, permettant une destruction sélective.
La prochaine étape consistera à confirmer cette spécificité dans des sphéroïdes mixtes (cellules cancéreuses et saines), à quantifier statistiquement ces résultats, et à élucider les mécanismes mécanobiologiques responsables de la mort cellulaire. Ces résultats prometteurs ouvrent la voie à une approche biomédicale innovante contre les cancers.

Études théoriques des courants orbitaux et des méchanismes de conversion afin d’optimiser les performances des dispositifs à couple spin-orbite

La thèse de doctorat proposée vise à comprendre et à identifier les paramètres clés qui régissent la conversion des moments orbitaux en courants de spin, dans le but d'améliorer l'efficacité d'écriture des dispositifs de mémoire magnétique à l’accès aléatoire à base de couple spin-orbite (SOT-MRAM). Les travaux utiliseront une approche de modélisation multi-échelle comprenant des calculs ab initio, liaisons fortes et atomistiques de l'effet Hall orbital (OHE) et de l'effet Rashba-Edelstein orbital (OREE). Ces phénomènes présentent des amplitudes et des longueurs de diffusion orbital qui peuvent être plus importantes que leurs équivalents de spin, l'effet Hall de spin (SHE) et l'effet Rashba-Edelstein (REE). De plus, ils sont présents dans une gamme plus large de matériaux, y compris les métaux légers à faible résistivité. Cela ouvre des perspectives très intéressantes pour des matériaux plus efficaces et plus conducteurs, susceptibles de lever les verrous limitant le déploiement technologique de la SOT-MRAM.

Cette thèse jouera un rôle essentiel dans une collaboration étroite entre laboratoires SPINTEC (Spintronique et Technologies de Composants) et LETI (Laboratoire d'électronique des technologies de l'information)au CEA. Le doctorant conduira les calculs ab initio à SPINTEC afin de dévoiler les caractéristiques des matériaux fondamentales pour exploiter les phénomènes orbitroniques décrits, et il construira des hamiltoniens multi-orbitaux au LETI pour calculer le transport orbital et de spin, en forte interaction/synergie avec expérimentateurs travaillant sur développement de SOT-MRAM. Le doctorat sera co-supervisé par M. Chshiev, K. Garello à Spintec et J. Li au LETI. Ce projet de doctorat sera au cœurs de collaborations avec des groupes théoriques et expérimentaux de premier au niveau national et international.

Les candidats hautement motivés ayant une solide formation en physique des solides, en théorie de la matière condensée et en simulations numériques sont encouragés à postuler. Le candidat sélectionné effectuera des calculs à l'aide du cluster de calcul de Spintec, en s'appuyant sur des progiciels basés sur les principes fondamentaux de la DFT et d'autres outils de simulation. Les résultats seront analysés de manière rigoureuse et pourront être publiés dans des revues internationales à comité de lecture.

Alliage digital (GaN)n/(AlN)m pour la réalisation de LED capable d'émettre dans l'UV profond

Contexte :
Les semiconducteurs nitrures du groupe III (GaN, AlN, InN) sont réputés pour leurs excellentes propriétés d’émission lumineuse. Depuis plus de deux décennies, ils sont à la base des LED bleues et blanches utilisées dans le monde entier, grâce à des puits quantiques InGaN très efficaces (rendement quantique externe > 80 %). En revanche, les LED UV basées sur des puits quantiques AlGaN restent très peu efficaces (< 10 %) et ne sont devenues commercialement disponibles que récemment. Surmonter cette limitation constitue un défi majeur en optoélectronique : obtenir une émission UV profonde efficace (220–280 nm) permettrait de développer des applications bactéricides performantes, telles que la purification de l’eau, la stérilisation de surfaces ou l'élimination de virus.

Récemment, deux concepts innovants se sont révélés particulièrement prometteurs pour les LED UV :
1. Émission UV profonde à partir de monocouches de GaN dans l’AlN : il s’agit de faire croître quelques monocouches atomiques (ML) de GaN insérées dans une matrice d’AlN. Ce confinement quantique extrême conduit à une émission dans l’UV profond, jusqu’à 220 nm. Une forte efficacité d’émission est attendue grâce à une liaison excitonique intense, stable même à température ambiante.
2. Amélioration du dopage à l’aide d’alliages numériques gradués GaN/AlN : cette approche consiste à utiliser un alliage digital (GaN)?/(AlN)?, où n et m représentent le nombre de couches atomiques. Cette architecture permet un dopage efficace de type n et surtout p, ce qui constitue un verrou technologique majeur dans les matériaux AlGaN. Le GaN étant beaucoup plus facile à doper que l’AlN, cette méthode s’avère très prometteuse pour la fabrication de dispositifs.

Objectifs scientifiques :
L’objectif est de maîtriser la croissance de monocouches par MOVPE (épitaxie en phase vapeur métal-organique), la technique la plus pertinente sur le plan industriel :
- Projet de M2 : développer la croissance de monocouches de GaN sur substrats d’AlN, étudier leurs propriétés d’émission dans l’UV profond et optimiser les conditions de croissance pour obtenir un dépôt auto-limitant d’une seule couche.
- Poursuite en thèse : concevoir et fabriquer des alliages digitaux dopés GaN/AlN afin de réaliser les premières LED UV profondes efficaces basées sur cette architecture.

Contexte du laboratoire et collaborations :
Le groupe dispose d’une longue expérience dans l’étude de l’émission lumineuse visible et UV à partir de nanofils de nitrures. Nous avons déjà démontré une émission à 280 nm à partir un alliage digital (GaN)?/(AlGaN)?, confirmant la faisabilité de cette approche. Le projet sera fortement expérimental (croissance épitaxiale, caractérisations structurales et optiques avancées) et mené en étroite collaboration avec l’Institut Néel pour l’analyse en cathodoluminescence et la fabrication de dispositifs.

Pourquoi rejoindre ce projet ?
Acquérez une expertise en épitaxie, en physique des semiconducteurs et en optoélectronique. Travaillez dans un environnement dynamique et collaboratif, en lien étroit avec le monde industriel. Contribuez au développement de la prochaine génération de LED émettant dans l’UV profond.

Croissance et caractérisation de l’AlScN : un nouveau matériau prometteur pour les dispositifs piézoélectriques et ferroélectriques

Les semi-conducteurs III-nitrures — GaN, AlN et InN — ont révolutionné le marché de l’éclairage et pénètrent rapidement le secteur de l’électronique de puissance. Actuellement, de nouveaux composés nitrures sont explorés dans la recherche de nouvelles fonctionnalités. Dans ce contexte, le nitrure d’aluminium et de scandium (AlScN) s’est imposé comme un nouveau membre particulièrement prometteur de la famille des nitrures. L’incorporation de scandium dans l’AlN conduit à :

* Des constantes piézoélectriques accrues : ce qui rend l’AlScN très attractif pour la fabrication de générateurs piézoélectriques et de filtres SAW/BAW à haute fréquence.
* Une polarisation spontanée augmentée : cette polarisation renforcée peut être exploitée dans la conception de transistors à haute mobilité électronique (HEMTs) présentant une densité de charge très élevée dans le canal.
* La ferroélectricité : la découverte récente (2019) de propriétés ferroélectriques ouvre la voie au développement de nouvelles mémoires non volatiles.

Au cours des cinq dernières années, l’AlScN est devenu un sujet majeur de recherche, présentant de nombreuses questions ouvertes et de passionnantes perspectives à explorer.

Cette thèse de doctorat portera sur l’étude de la croissance et des propriétés de l’AlScN et du GaScN synthétisés par épitaxie par jets moléculaires (MBE). Le doctorant sera formé à l’utilisation d’un système MBE pour la synthèse des semi-conducteurs III-nitrures ainsi qu’à la caractérisation structurale des matériaux par microscopie à force atomique (AFM) et diffraction des rayons X (XRD). La variation des propriétés de polarisation du matériau sera étudiée par l’analyse de la photoluminescence de structures à puits quantiques. Enfin, le doctorant sera formé à l’utilisation de logiciels de simulation pour modéliser la structure électronique des échantillons, afin de faciliter l’interprétation des résultats optiques.

Développement de biocapteurs interférométriques photo-imprimés sur fibres optiques multicoeurs pour le diagnostic moléculaire

Les fibres optiques sont des dispositifs peu invasifs couramment utilisés en médecine pour l'imagerie tissulaire in vivo par endoscopie. Cependant, à l'heure actuelle, elles ne fournissent que des images et aucune information moléculaire sur les tissus observés. La thèse proposée s'inscrit dans un projet visant à conférer aux fibres optiques la capacité d'effectuer des reconnaissances moléculaires afin de développer des biocapteurs innovants capables d'effectuer une analyse moléculaire en temps réel, à distance, in situ et multiplexée. Un tel outil pourrait apporter des progrès importants dans le domaine médical, et plus particulièrement dans l'étude des pathologies cérébrales pour lesquelles la connaissance de l'environnement tumoral, difficilement accessible par des biopsies classiques, est primordiale.
L'approche proposée repose sur l'impression par polymérisation à 2-photons de structures interférométriques à l'extrémité de chacun des cœurs d'un assemblage multifibre. Le principe de détection repose sur les interférences se produisant dans ces structures et leur modification par l'adsorption de molécules biologiques. Chacune des fibres de l’assemblage agira comme un capteur individuel et la mesure de l'intensité de la lumière rétro-réfléchie à l'extrémité fonctionnalisée permettra de rendre compte des interactions biologiques se produisant sur cette surface. Grâce à la modélisation du phénomène d’interférence, nous avons déterminé des paramètres pour optimiser la forme et la sensibilité des structures interférométriques (PTC InSiBio 2024-2025). Ces résultats ont permis l'impression et la caractérisation de la sensibilité de structures interférométriques sur mono-fibres. Les objectifs de la thèse sont de poursuivre cette caractérisation optique sur de nouveaux échantillons et de développer des méthodes de fonctionnalisation photo-chimiques originales afin de greffer plusieurs sondes biologiques à la surface des assemblages de fibres. Cette multi-fonctionnalisation permettra de réaliser une détection multiplexée, essentielle pour envisager une application médicale future. Selon l'avancement de la thèse, les biocapteurs seront validés au travers de la détection de cibles biologiques dans des milieux de plus en plus complexes pouvant aller jusqu'à un modèle de tissu cérébral.

Modélisation d'une diode magnonique basée sur la non-réciprocité des ondes de spin dans les nanofils et les nanotubes

Ce projet de doctorat porte sur le phénomène émergent de non-réciprocité des ondes de spin dans les fils magnétiques cylindriques, de leurs propriétés fondamentales jusqu'à leur exploitation pour la réalisation de dispositifs à base de diodes magnoniques. Des expériences préliminaires menées dans notre laboratoire SPINTEC sur des fils cylindriques, avec une aimantation axiale dans le cœur et azimutale à la surface du fil, ont révélé un effet asymétrique géant (courbes de dispersion asymétriques avec des vitesses et des périodes différentes pour les ondes se propageant vers la gauche et vers la droite), créant même une bande interdite pour une direction de mouvement donnée, liée à la circulation de la magnétisation (vers la droite ou vers la gauche). Cette situation particulière n'a pas encore été décrite théoriquement ni modélisée, ce qui constitue un terrain inexploré et prometteur pour ce projet de doctorat. Pour modéliser la propagation des ondes de spin et dériver les courbes de dispersion pour un matériau donné, nous prévoyons d'utiliser divers outils numériques : notre logiciel micromagnétique 3D par éléments finis feeLLGood et le logiciel 2D open source TetraX dédié aux calculs de modes propres et spectres associés. Ce travail sera mené en étroite collaboration avec des expérimentateurs, dans le but à la fois d'expliquer les résultats expérimentaux et d'orienter les futures expériences et les axes de recherche.

Cartographie des potentiels de surface des oxydes métalliques activées catalytiquement utilisés comme des photoanodes

Lors de la photoélectrolyse d’eau, le transfert de charges à l'interface photoanode/électrolyte est déterminé par l'alignement des bandes d'énergie, à la fois côté électrode et côté électrolyte. Le potentiel de surface de l’électrode joue un rôle majeur sur la courbure finale des bandes et par conséquent sur la séparation des charges à l’interface. Aussi appelé potentiel de surface électrochimique, il varie en fonction de l'environnement (vide, air, eau, etc.). L'objectif de cette thèse est d'aborder la réaction d’oxydation de l’eau (OER) à l'interface photoanode/électrolyte en termes de bandes d'énergie et en particulier du point de vue du potentiel de surface électrochimique. Ainsi, au cours de cette thèse, le doctorant caractérisera les potentiels de surface d'une série de photoanodes (oxydes métallique semiconducteurs activées catalytiquement) en contact avec différents environnements (vide, air à humidité variable, eau) et les corrélera à l'activité photoélectrochimique (PEC). L'activité du doctorant s'articulera autour de quatre axes : i) synthèse de photoanodes par voie chimique ; ii) caractérisation de l'activité photoélectrochimique ; iii) caractérisation par microscopie à force atomique (AFM) corrélée à la microscopie à force de Kelvin (KPFM) ; iv) spectromicroscopies de rayons X synchrotron (STXM, XPEEM) et photoémission à pression ambiante (NAP-XPS). L'étudiant sera accueilli au laboratoire SPEC du CEA-Saclay pendant toute la durée de sa thèse. Ses travaux s'inscrivent dans le cadre d'une collaboration de longue date entre SPEC et SOLEIL.

Détection ultrarapide par qubits volants électroniques et de Majorana

Une voie émergente pour l’information quantique consiste à utiliser des charges électroniques volantes, comme les excitations électroniques, en tant que qubits.
Ces qubits volants présentent un avantage majeur : l’interaction de Coulomb intrinsèque, permettant des portes logiques à deux qubits et des applications en détection quantique.
Par rapport aux qubits photoniques, ils offrent donc un levier naturel pour dépasser certaines limitations fondamentales.
Leur principal inconvénient réside dans la décohérence rapide, mais cette difficulté peut être atténuée en opérant à des échelles ultrarapides, de l’ordre de la picoseconde.
Une stratégie supplémentaire consiste à exploiter la protection topologique apportée par les modes de Majorana, quasi-particules non-Abéliennes insensibles aux perturbations locales.
Jusqu’ici, la majorité des travaux se sont concentrés sur des modes 0D localisés (aux extrémités de nanofils supraconducteurs), sans démonstrations expérimentales concluantes.
Notre projet de thèse propose une approche nouvelle, fondée sur les modes de Majorana chiraux 1D, constituant une voie vers des qubits volants protégés topologiquement.
L’ambition est de bâtir une plateforme inédite de calcul et de détection quantiques.
Cette plateforme exploitera le graphène multicouche, où peuvent être combinés effet Hall quantique anormal, supraconductivité et modes de Majorana chiraux.

Top