Vers une plateforme d’irradiation photonique multimodale : fondements et conceptualisation

Les techniques d’irradiation photonique exploitent les interactions entre un faisceau de photons de haute énergie et la matière pour effectuer des mesures non destructives. En induisant des réactions photonucléaires, telles que l’activation photonique, les résonances de fluorescence nucléaire (NRF) et la photofission, ces techniques d’irradiation permettent de sonder la matière en profondeur. L’association de ces différentes techniques de mesure nucléaire au sein d’une plateforme d’irradiation unique permettrait une identification précise et quantitative d’une grande variété d’éléments, en sondant le volume des matériaux ou objets étudiés. Le faisceau de photons de haute énergie est généralement produit par rayonnement de freinage (phénomène de Bremsstrahlung) au sein d’une cible de conversion d’un accélérateur linéaire d’électrons. Une alternative innovante consiste à exploiter les électrons de haute énergie délivrés par une source laser-plasma, convertis par rayonnement de freinage ou par diffusion Compton inverse. Une plateforme basée sur une telle source offrirait de nouvelles possibilités, car les sources laser-plasma peuvent atteindre des énergies significativement supérieures, permettant ainsi l'accès à de nouvelles techniques et applications d'imagerie avancées. L’objectif de cette thèse est d’établir les fondements et de conceptualiser une plateforme d’irradiation photonique multimodale. Un tel dispositif viserait à se baser sur une source laser-plasma et permettrait la combinaison des techniques d’activation photonique, des résonances de fluorescence nucléaire (NRF) et de la photofission. En repoussant les limites des mesures nucléaires non destructives, cette plateforme offrirait des solutions innovantes à des défis majeurs dans des secteurs stratégiques tels que la sécurité et le contrôle aux frontières, la gestion des colis de déchets radioactifs, ainsi que l'industrie du recyclage.

Réactions nucléaires induites par des anti-ions légers – apport du modèle INCL

L’interaction d’une antiparticule avec un noyau atomique est un type de réaction qu’il faut savoir simuler pour pouvoir répondre à des questions fondamentales. On peut citer comme exemples, la collaboration PANDA (FAIR) avec des faisceaux d’antiproton de l’ordre du GeV qui envisage l’étude des interactions nucléon-hypéron, ainsi que celle de la peau de neutron, par la production d’hypérons et d’antihypérons. Cette même peau de neutron est aussi étudiée avec des antiprotons au repos avec l’expérience PUMA (AD - Cern). Au même endroit nous collaborons avec l’expérience ASACUSA pour l’étude de la production des particules chargées. Pour répondre à ces études, notre code de réactions nucléaires INCL a été étendu aux antiprotons (thèse D. Zharenov soutenue fin 2023). Au-delà de l’antiproton il y a les antideutérons et antiHe-3. Ces antiparticules sont d’un intérêt plus récent, avec notamment l'expérience GAPS (General AntiParticle Spectrometer) qui vise à mesurer les flux de ces particules dans le rayonnement cosmique. L’idée est de mettre en évidence la matière noire, dont ces particules seraient des produits de décroissance, et dont la quantité mesurée doit ressortir plus facilement du bruit de fond astrophysique que dans le cas des antiprotons. Le sujet proposé est donc l’implantation des anti-noyaux légers dans INCL avec comparaisons à des données expérimentales.

Mesure du flux elliptique des quarks charmés dans les collisions Pb-Pb semi-centrales à 5 TeV au CERN avec LHCb.

Les collisions d'ions lourds offrent une opportunité unique d'étudier le plasma de quarks et de gluons (QGP), un état exotique de la matière dans lequel les quarks et les gluons ne sont plus confinés dans les hadrons, et qui aurait existé quelques microsecondes après le Big Bang. Parmi les sondes clés pour l'étude du QGP figurent les quarks charmés. En effet, ces derniers conservent l'histoire de leurs interactions avec le QGP, les rendant essentiels pour comprendre les propriétés du QGP. La production de quarks charmés et leurs interactions avec le QGP sont étudiées à travers les mesures des hadrons, mésons et baryons contenant au moins un quark ou antiquark charm, tels que les mésons D0 ou les baryons Lambda_c. Cependant, le processus d'hadronisation — la manière dont les quarks charm se confinent dans des baryons ou mésons incolores — reste encore mal compris.

Une approche prometteuse pour approfondir la compréhension de l'hadronisation des quarks charmés réside dans la mesure de leur écoulement elliptique, une mesure de corrélations angulaires à longue distance, une signature des effets collectifs dus à la thermalisation du QGP. En comparant l'écoulement elliptique des mésons D0 et des baryons Lambda_c, sensible aux propriétés du milieu créé, les chercheurs peuvent approfondir leurs connaissance sur le mécanisme d'hadronisation des quarks charmés.

Pour mesurer cet écoulement elliptique, l'étudiant.e sélectionné.e développera une méthode innovante exploitant pleinement les capacités du détecteur LHCb. Cette méthode, jamais appliquée auparavant, permet une interprétation plus intuitive et théoriquement robustes des mesures d'écoulement elliptique par rapport aux méthodes traditionnelles. Le/la candidat.e adaptera cette technique pour le détecteur LHCb afin de mesurer, comparer et interpréter l'écoulement elliptique des baryons charmés Lambda_c et des mésons D0 dans les nouvelles données PbPb collectés par LHCb en 2024.

Etude des mécanismes de réaction pour la synthèse d’éléments super-lourds

Cette thèse a pour but d’étudier les mécanismes de réaction menant à la synthèse de noyaux super-lourds en appui au programme de recherche expérimental qui sera développé auprès de l’installation S3 de Spiral2 au GANIL à Caen. Elle vise à renforcer la précision de la modélisation de la réaction en évaluant, grâce à l’analyse d’incertitudes, les expériences les plus prometteuses pour contraindre les paramètres et la modélisation.

L'une des principales activités de la physique nucléaire est l'étude des propriétés des noyaux exotiques jusqu'aux limites d’existence des noyaux, dans les régions où les rapports proton-neutron sont extrêmes (driplines proton/neutron) et aux nombres de masse A et atomiques Z les plus élevés. Les noyaux dits super-lourds ne peuvent exister au-delà de la limite établie par le modèle de la goutte liquide – définie par une barrière de fission qui disparaît –, que grâce aux effets en couches de la mécanique quantique. Ces noyaux sont particulièrement intéressants parce qu'ils se situent à la limite entre la physique des petits systèmes à quelques corps et celle des systèmes à grand nombre de corps : les nombres magiques de protons et de neutrons, Z et N, sont remplacés par une région ou un îlot de magicité étendu en Z et N.

La synthèse de ces noyaux très- et super-lourds par des réactions de fusion-évaporation est un défi expérimental en raison des sections efficaces extrêmement faibles. La modélisation de la réaction complète afin de guider les expériences est également un défi difficile, car les modèles développés pour les noyaux plus légers ne peuvent pas être simplement extrapolés. Les réactions de fusion sont entravées par rapport à ce qui est observé avec les noyaux légers en raison de la très forte interaction Coulombienne, qui est renforcée par la forte répulsion causée par le grand nombre de charges positives (protons) dans le système, en concurrence avec la force d'attraction forte (nucléaire) dans un régime hautement dynamique. Le pouvoir prédictif des modèles doit être amélioré, bien que l'origine du phénomène d'entrave soit qualitativement bien comprise. Les ambiguïtés quantitatives sont suffisamment importantes pour observer des différences de quelques ordres de grandeur dans les probabilités de fusion calculées par différents modèles. Une petite modification de la section efficace pourrait nécessiter de nombreux mois pour réaliser des expériences réussies.

Au GANIL, en collaboration avec d'autres instituts, nous avons développé un modèle qui décrit les trois étapes de la réaction de synthèse des noyaux super-lourds. Les développements futurs se concentreront sur la recherche de moyens d'évaluer les modèles afin d'améliorer leur pouvoir prédictif, notamment en concevant des expériences spécifiques afin de contraindre l’amplitude de l'entrave à la fusion. Bien entendu, une analyse minutieuse de l'incertitude permettra d'améliorer le pouvoir prédictif des modèles. Des méthodes standard ainsi que des méthodes d'analyse de données de pointe telles que l'analyse bayésienne peuvent être utilisées.

Ce travail de doctorat sera effectué en collaboration avec le groupe expérimental du GANIL et une équipe de recherche à Varsovie (Pologne). En fonction des compétences de l'étudiant, la thèse sera plus orientée vers des développements formels ou vers les expériences menées dans la nouvelle installation S3 sur Spiral2. La participation aux expériences est possible.

Etudes expérimentales et théoriques de la génération du moment angulaire nucléaire et de l’énergie d’excitation des fragments de fission

La découverte de la fission en 1939 a profondément modifié notre connaissance de la physique nucléaire. Cette réaction permet de diviser des noyaux lourds comme l'uranium 235, en deux noyaux (fragments) plus légers, tout en libérant une grande quantité d'énergie. Les travaux de recherche sur la fission prennent la forme de modèles nucléaires servant à produire des bases de données nucléaires, qui sont essentiels pour simuler les réacteurs nucléaires. La qualité de ces données est encore insuffisante aujourd’hui, car notre compréhension fine de la fission reste très fragmentaire.
Ce travail de thèse vise à mieux décrire la génération du moment angulaire et l'énergie d'excitation des fragments de fission d’un point de vue expérimental et théorique. Ces recherches permettront à la fois de mieux comprendre le processus sous-jacent et d’améliorer le pouvoir de prédiction des outils de simulations, notamment les modèles utilisés pour calculer les échauffements gamma au sein d’un réacteur. Une partie du travail du doctorant consistera en l’exploitation des données acquises durant une thèse récente. Une autre partie sera la participation à des campagnes expérimentales complémentaires auprès du réacteur nucléaire de l’Institut Laue-Langevin (ILL), à l’aide du spectromètre LOHENGRIN afin de mesurer les rapports isomériques et les distributions en énergie cinétique des fragments de fission.
Le doctorant sera positionné au sein d’un laboratoire de physique nucléaire et de physique des réacteurs. Il développera des compétences en analyse de données, en physique nucléaire ainsi qu’en programmation informatique. Les langages utilisés seront C++ et python. Les débouchés sont la recherche en milieu académique ou industriel, également des postes de Data Scientist.

Test d’invariance de renversement du temps dans la désintégration beta nucléaire : analyse des données de MORA à JYFL

L’expérience MORA recherche des signes de violation de CP dans la désintégration beta d’ions piégés polarisés. Elle emploie des techniques de pointe afin d’atteindre une sensibilité jamais atteinte pour la mesure de la corrélation D (<10-4). Cette corrélation est sensible à une Nouvelle Physique qui pourrait expliquer l’asymétrie matière antimatière observée dans l’univers. La thèse consiste en l’analyse des données de la campagne qui se poursuit à Jyväskylä pour 23Mg+ et 39Ca+, en Finlande.

Développement d’un système dosimétrique pour le suivi des traces alpha dans les essais in vitro de la radiothérapie interne vectorisée alpha

La thérapie alpha ciblée (TAC) est une nouvelle méthode prometteuse pour traiter le cancer. Elle utilise des substances radioactives appelées radioisotopes émetteurs alpha, qui sont injectées dans le corps du patient. Ces substances se dirigent spécifiquement vers les cellules cancéreuses, ce qui permet de concentrer la radiation là où elle est le plus nécessaire, c'est-à-dire près des tumeurs. Les particules alpha sont particulièrement efficaces car elles ont une courte portée et peuvent détruire les cellules cancéreuses de manière très ciblée.
Comme pour tout nouveau traitement, la TAC doit passer par des études précliniques pour vérifier son efficacité et la comparer à d'autres traitements existants. Une partie importante de ces recherches se fait en laboratoire, où des cellules cancéreuses sont exposées à ces substances radioactives pour observer leurs effets, comme le taux de survie des cellules. Cependant, évaluer l'impact des particules alpha nécessite des méthodes spécifiques, car leur comportement es

Etude de la désexcitation radiative du noyau avec une méthode de type Oslo

La capture d’un neutron par un noyau amène à un noyau composé prompt à se désexciter principalement en émettant des gammas si l’énergie d’excitation est inférieure au MeV. Ce processus est appelé capture radiative. Cette réaction, bien connue, dont on sait précisément mesurer la section efficace aux basses énergies pour des noyaux de ou proche de la vallée de stabilité, reste difficilement mesurable pour des noyaux plus exotiques.Les modèles de réactions nucléaires basés essentiellement sur les noyaux stables peinent,eux aussi, à apporter des prédictions fiables de ces sections efficaces sur ces noyaux exotiques. Cependant, ces dernières années,des avancées dans la modélisation et dans les mesures autour de cette réaction a permis d’entrevoir des voies d’améliorations significatives en s’intéressant aux ingrédients plus microscopiques, qui restent accessibles à des mesures plus fines: la fonction de force gamma et la densité de niveaux. En effet, ces ingrédients qui gèrent respectivement la manière dont la cascade gamma se déroule et la structure du noyau à haute énergie d’excitation peuvent être mesurés pour aider ensuite à les calculer plus finement. Ces améliorations ont un impact direct sur la prédiction des sections efficaces pour des noyaux instables que l’on trouve dans la nucléosynthèse stellaire. Le sujet de cette thèse est de mesurer ces ingrédients pour un noyau formé dans la nucléosynthèse en utilisant un nouveau dispositif appelé SFyNCS.

Ajustement d'un modèle d’interaction nucléaire effective et propagation des erreurs statistiques

Au cœur de chaque approche « many-body » utilisée pour décrire les propriétés fondamentales d’un noyau atomique, on retrouve l’interaction effective nucléon-nucléon. Une telle interaction effective doit prendre en compte les effets du milieu nucléaire. Pour l’obtenir, il faut utiliser un protocole d’ajustement complexe qui prend en compte une variété d’observables nucléaires comme les rayons, les masses, les centroïdes des résonances géantes ou encore l’équation d’état de la matière nucléaire autour de la densité de saturation.
Un modèle d’interaction forte très utilisé est celui de Gogny, qui est formé par une combinaison linéaire des constantes de couplages et d’opérateurs avec un facteur de forme radial de type Gaussien [1]. Les constantes de couplages sont déterminées via un protocole d’ajustement sur les propriétés d’un nombre restreint de noyaux, typiquement les noyaux sphériques comme 40-48Ca, 56Ni, 120Sn et 208Pb.
L’objectif premier de cette thèse consiste à développer un protocole d’ajustement de l’interaction nucléaire qui puisse donner accès à la matrice de covariance des paramètres du modèle pour ensuite effectuer une analyse de la propagation des erreurs statistiques sur les observables nucléaires [2].
Après avoir analysé les relations entre paramètres et leurs poids relatifs sur les différentes observables, le doctorant explorera la possibilité de modifier certains termes de l’interaction comme le terme à trois corps ou les effets au-delà du champ moyen.
Le doctorant sera positionné dans une équipe de physiciens nucléaires au sein d’un laboratoire d’étude de physique de l'institut CEA IRESNE situé à Cadarache. Le travail s’effectuera en équipe avec le CEA/DIF. Les principaux débouchés professionnels sont la recherche académique et les organismes de R&D dans le domaine nucléaire.

[1] D. Davesne et al. "Infinite matter properties and zero-range limit of non-relativistic finite-range interactions." Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. "Uncertainty propagation within the UNEDF models." Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.

Modèles microscopiques de structure nucléaire pour étudier le processus de désexcitation dans la fission nucléaire

Le code FIFRELIN est développé au CEA/IRESNE Cadarache afin de fournir une description détaillée du processus de fission et de calculer avec précision toutes les observables de fission pertinentes. Le code repose en grande partie sur la connaissance détaillée de la structure sous-jacente des noyaux impliqués dans le processus de désexcitation post-fission. Dans la mesure du possible, le code s'appuie sur des bases de données de structures nucléaires telles que RIPL-3, qui fournissent des informations précieuses sur les schémas de niveaux nucléaires, les rapports de branchement et d'autres propriétés nucléaires essentielles. Malheureusement, toutes ces quantités n'ont pas été mesurées, des modèles nucléaires sont donc utilisés.

Le développement de modèles nucléaires avancés est la tâche du groupe de théorie nucléaire nouvellement formé à Cadarache, dont l'expertise principale est l'implémentation de solveurs du problème nucléaire à A corps basés sur des interactions nucléon-nucléon effectives.

Le but de cette thèse est de quantifier l'impact de la fonction de force E1/M1 et E2/M2 sur les observables de fission. Actuellement, cette quantité est principalement estimée à l'aide de modèles simples tels que la Lorentzienne généralisée. Le doctorant devra remplacer ces modèles par des théories entièrement microscopiques basées sur l'interaction effective entre les nucléons via les techniques de type QRPA. Une étude préliminaire a démontré que l'utilisation de modèles macroscopiques (Lorentzienne généralisé) ou microscopiques (QRPA) a un impact non négligeable sur les observables de fission.

Les débouchés de la thèse incluent la recherche académique et les labos de R&D nucléaire théorique et appliquée.

Top