Développement d’un système dosimétrique pour le suivi des traces alpha dans les essais in vitro de la radiothérapie interne vectorisée alpha
La thérapie alpha ciblée (TAC) est une nouvelle méthode prometteuse pour traiter le cancer. Elle utilise des substances radioactives appelées radioisotopes émetteurs alpha, qui sont injectées dans le corps du patient. Ces substances se dirigent spécifiquement vers les cellules cancéreuses, ce qui permet de concentrer la radiation là où elle est le plus nécessaire, c'est-à-dire près des tumeurs. Les particules alpha sont particulièrement efficaces car elles ont une courte portée et peuvent détruire les cellules cancéreuses de manière très ciblée.
Comme pour tout nouveau traitement, la TAC doit passer par des études précliniques pour vérifier son efficacité et la comparer à d'autres traitements existants. Une partie importante de ces recherches se fait en laboratoire, où des cellules cancéreuses sont exposées à ces substances radioactives pour observer leurs effets, comme le taux de survie des cellules. Cependant, évaluer l'impact des particules alpha nécessite des méthodes spécifiques, car leur comportement es
Etude de la désexcitation radiative du noyau avec une méthode de type Oslo
La capture d’un neutron par un noyau amène à un noyau composé prompt à se désexciter principalement en émettant des gammas si l’énergie d’excitation est inférieure au MeV. Ce processus est appelé capture radiative. Cette réaction, bien connue, dont on sait précisément mesurer la section efficace aux basses énergies pour des noyaux de ou proche de la vallée de stabilité, reste difficilement mesurable pour des noyaux plus exotiques.Les modèles de réactions nucléaires basés essentiellement sur les noyaux stables peinent,eux aussi, à apporter des prédictions fiables de ces sections efficaces sur ces noyaux exotiques. Cependant, ces dernières années,des avancées dans la modélisation et dans les mesures autour de cette réaction a permis d’entrevoir des voies d’améliorations significatives en s’intéressant aux ingrédients plus microscopiques, qui restent accessibles à des mesures plus fines: la fonction de force gamma et la densité de niveaux. En effet, ces ingrédients qui gèrent respectivement la manière dont la cascade gamma se déroule et la structure du noyau à haute énergie d’excitation peuvent être mesurés pour aider ensuite à les calculer plus finement. Ces améliorations ont un impact direct sur la prédiction des sections efficaces pour des noyaux instables que l’on trouve dans la nucléosynthèse stellaire. Le sujet de cette thèse est de mesurer ces ingrédients pour un noyau formé dans la nucléosynthèse en utilisant un nouveau dispositif appelé SFyNCS.
Ajustement d'un modèle d’interaction nucléaire effective et propagation des erreurs statistiques
Au cœur de chaque approche « many-body » utilisée pour décrire les propriétés fondamentales d’un noyau atomique, on retrouve l’interaction effective nucléon-nucléon. Une telle interaction effective doit prendre en compte les effets du milieu nucléaire. Pour l’obtenir, il faut utiliser un protocole d’ajustement complexe qui prend en compte une variété d’observables nucléaires comme les rayons, les masses, les centroïdes des résonances géantes ou encore l’équation d’état de la matière nucléaire autour de la densité de saturation.
Un modèle d’interaction forte très utilisé est celui de Gogny, qui est formé par une combinaison linéaire des constantes de couplages et d’opérateurs avec un facteur de forme radial de type Gaussien [1]. Les constantes de couplages sont déterminées via un protocole d’ajustement sur les propriétés d’un nombre restreint de noyaux, typiquement les noyaux sphériques comme 40-48Ca, 56Ni, 120Sn et 208Pb.
L’objectif premier de cette thèse consiste à développer un protocole d’ajustement de l’interaction nucléaire qui puisse donner accès à la matrice de covariance des paramètres du modèle pour ensuite effectuer une analyse de la propagation des erreurs statistiques sur les observables nucléaires [2].
Après avoir analysé les relations entre paramètres et leurs poids relatifs sur les différentes observables, le doctorant explorera la possibilité de modifier certains termes de l’interaction comme le terme à trois corps ou les effets au-delà du champ moyen.
Le doctorant sera positionné dans une équipe de physiciens nucléaires au sein d’un laboratoire d’étude de physique de l'institut CEA IRESNE situé à Cadarache. Le travail s’effectuera en équipe avec le CEA/DIF. Les principaux débouchés professionnels sont la recherche académique et les organismes de R&D dans le domaine nucléaire.
[1] D. Davesne et al. "Infinite matter properties and zero-range limit of non-relativistic finite-range interactions." Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. "Uncertainty propagation within the UNEDF models." Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.
Modèles microscopiques de structure nucléaire pour étudier le processus de désexcitation dans la fission nucléaire
Le code FIFRELIN est développé au CEA/IRESNE Cadarache afin de fournir une description détaillée du processus de fission et de calculer avec précision toutes les observables de fission pertinentes. Le code repose en grande partie sur la connaissance détaillée de la structure sous-jacente des noyaux impliqués dans le processus de désexcitation post-fission. Dans la mesure du possible, le code s'appuie sur des bases de données de structures nucléaires telles que RIPL-3, qui fournissent des informations précieuses sur les schémas de niveaux nucléaires, les rapports de branchement et d'autres propriétés nucléaires essentielles. Malheureusement, toutes ces quantités n'ont pas été mesurées, des modèles nucléaires sont donc utilisés.
Le développement de modèles nucléaires avancés est la tâche du groupe de théorie nucléaire nouvellement formé à Cadarache, dont l'expertise principale est l'implémentation de solveurs du problème nucléaire à A corps basés sur des interactions nucléon-nucléon effectives.
Le but de cette thèse est de quantifier l'impact de la fonction de force E1/M1 et E2/M2 sur les observables de fission. Actuellement, cette quantité est principalement estimée à l'aide de modèles simples tels que la Lorentzienne généralisée. Le doctorant devra remplacer ces modèles par des théories entièrement microscopiques basées sur l'interaction effective entre les nucléons via les techniques de type QRPA. Une étude préliminaire a démontré que l'utilisation de modèles macroscopiques (Lorentzienne généralisé) ou microscopiques (QRPA) a un impact non négligeable sur les observables de fission.
Les débouchés de la thèse incluent la recherche académique et les labos de R&D nucléaire théorique et appliquée.
RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS
La désintégration nucléaire à deux photons, ou double-gamma, est un mode de désintégration rare dans les noyaux atomiques, par lequel un noyau dans un état excité émet deux rayons gamma simultanément. Les noyaux pairs avec un premier état excité 0+ sont des cas favorables à la recherche d'une branche de désintégration double-gamma, puisque l'émission d'un seul rayon gamma est strictement interdite pour les transitions 0+ to 0+ en raison de la conservation du moment angulaire. La désintégration double-gamma reste encore une branche de désintégration très petite (<1E-4) en compétition avec les modes de désintégration dominants (de premier ordre) des électrons de conversion interne atomique (ICE) ou de la création de paires internes positron-électron (e+-e-) (IPC).
Le projet de thèse comporte deux parties expérimentales distinctes: Premièrement, nous stockons des ions nus (entièrement épluchés) dans leur état excité 0+ dans l'anneau de stockage d'ions lourds (ESR) au GSI pour rechercher la désintégration double-gamma dans plusieurs nucléides. Pour les atomes neutres, l'état excité 0+ est un état isomérique à durée de vie plutôt courte, de l'ordre de quelques dizaines à quelques centaines de nanosecondes. Cependant, aux énergies relativistes disponibles au GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désintégration par émission ICE n'est donc pas possible. Si l'état d'intérêt est situé en dessous du seuil de création de paires, le processus IPC n'est pas non plus possible. Par conséquent, les noyaux nus sont piégés dans un état isomérique à longue durée de vie, qui ne peut se désintégrer que par émission double-gamma vers l'état fondamental. La désintégration des isomères est identifiée par la spectroscopie de masse Schottky résolue dans le temps. Cette méthode permet de distinguer l'isomère et l'état fondamental par leur temps de révolution (très légèrement) différent dans l'ESR, et d'observer la disparition du pic de l'isomère dans le spectre de masse avec un temps de décroissance caractéristique. Des expériences établissant la désintégration double-gamma dans plusieurs nucléides (72Ge, 98Mo, 98Zr) ont déjà été réalisées avec succès et une nouvelle expérience a été acceptée par le comité de programme du GSI et sa réalisation est prévue pour 2025.
La deuxième partie concerne l'observation directe des photons émis à l'aide de la spectroscopie des rayons gamma. Alors que les expériences sur les anneaux de stockage permettent de mesurer la durée de vie partielle de la double désintégration gamma, des informations supplémentaires sur les propriétés nucléaires ne peuvent être obtenues qu'en mesurant les photons eux-mêmes. Une expérience test a été réalisée pour étudier sa faisabilité et les plans d'une étude plus détaillée devraient être élaborés dans le cadre du projet de doctorat.
Exploration de la dynamique des gluons dans le proton via la photoproduction exclusive du méson phi avec CLAS12
Les protons et neutrons sont constitués de partons (quarks et gluons) qui interagissent via la force forte, régie par la Chromodynamique Quantique (QCD). Si la QCD est calculable à haute énergie, sa complexité se révèle à basse énergie, nécessitant des contributions expérimentales pour comprendre les propriétés des nucléons, telles que leur masse et leur spin. L'extraction expérimentale des Distributions Généralisées des Partons (GPDs), qui décrivent les impulsions longitudinales et les positions transverses des partons dans les nucléons, fournit des informations cruciales sur ces propriétés fondamentales.
Cette thèse se concentre sur l’analyse des données du détecteur CLAS12, une expérience faisant partie de l'infrastructure de recherche du Jefferson Lab, l'un des 17 laboratoires nationaux aux États-Unis. CLAS12, un détecteur de 15 mètres de long à cible fixe et à grande acceptation, est dédié à la physique hadronique, notamment à l'extraction des GPDs. L'étudiant/e sélectionné/e étudiera la photoproduction exclusive du méson phi (gamma p -->phi p’), sensible aux GPDs des gluons, encore largement inexplorées. Il/elle développera un cadre pour étudier cette réaction dans le canal de désintégration leptonique (phi --> e+e-) et concevra un algorithme novateur basé sur des Graph Neural Network pour améliorer l'efficacité de détection des protons diffusés.
La thèse visera à extraire la section efficace de la photoproduction du phi et à l'interpréter en termes de distribution de masse dans les protons. Réalisé au Laboratoire de Structure du Nucléon (LSN), ce projet implique une collaboration internationale au sein de la collaboration CLAS, des voyages au Jefferson Lab pour la collecte de données, et des présentations lors de conférences. La maîtrise de la physique des particules, de la programmation (C++/Python) et de l’anglais est requise. Des connaissances de base en détecteurs de particules et en apprentissage automatique sont un atout, mais non obligatoires.
Near-threshold phenomena in nuclear structure and reactions
Il est proposé d'étudier les effets saillants du couplage entre les états discrets et continus à proximité de divers seuils d'émission de particules en utilisant le modèle en couches dans le plan d'énergie complexe. Ce modèle fournit la formulation unitaire d'un modèle en couches standard dans le cadre du système quantique ouvert pour la description d'états nucléaires bien liés, faiblement liés et non liés. Des études récentes ont démontré l'importance de l'énergie de corrélation résiduelle du couplage aux états du continuum pour la compréhension des états propres, leur énergie et modes de désintégration, au voisinage du canaux de reaction. Cette énergie résiduelle n'a pas encore été étudiée en details. Les études de cette thèse approfondiront notre compréhension des effets structurels induits par le couplage au continuum et apporteront un support aux études expérimentales au GANIL et ailleurs.
DE NOUVELLES VOIES POUR PRODUIRE DES NOYAUX LOURDS RICHES EN NEUTRONS
L'un des projets de recherche les plus importants de ces dernières années est né d'une question critique et non résolue concernant l'origine naturelle des noyaux plus lourds que le fer. Dans les noyaux lourds, riches en neutrons, la théorie predits l’existence d'un îlots de stabilité atour des nombres de protons Z = 114, 120 ou 126 et le nombre de neutrons N = 184.
Cependant, les efforts récents pour synthétiser des éléments superlourds et explorer les noyaux riches en neutrons N = 126 se sont heurtés à des difficultés considérables en raison des sections efficaces extrêmement faibles des réactions traditionnelles de fusion-évaporation. Ces facteurs soulignent le besoin urgent d'une solution alternative pour la synthèse des éléments super-lourds.Ces facteurs soulignent l'urgence de trouver d'autres mécanismes de réaction. L'une d'entre elles a été identifiée dans les réactions de transfert de multinucléons (MNT), qui offrent une voie prometteuse vers les noyaux lourds riches en neutrons. Nous travaillons sur ce mécanisme de réaction depuis plusieurs années, en réalisant des expériences à l'Argonne National Laboratory et dans d'autres laboratoires internationaux. L'objectif de cette thèse est d'analyser les données recueillies lors de l'expérience que ont a réaliser à Argonne (fin 2023) et de proposer une nouvelle expérience au spectromètre Prisma (Legnaro National Lab) couplé avec le détecteur Agata.
Formes, rotations et vibrations du noyau du 106Cd étudiées par spectroscopie gamma avec GRIFFIN et AGATA
Une des questions phares dans le domaine de la structure nucléaire concerne l'émergence de collectivité, et son lien avec la structure microscopique du noyau. Les noyaux atomiques peuvent manifester des comportements dits collectifs, où tous leurs constituants, les protons et les neutrons, se déplacent ensemble, à une fréquence donnée. Il s’agit surtout aux vibrations et rotations. Si un noyau n’est pas déformé, il ne peut être mis en rotation lorsqu’on l’excite ; en revanche, il présente des vibrations autour de sa forme d’équilibre sphérique.
Les isotopes pairs de cadmium ont longtemps été des cas d’école du comportement vibrationnel. Cette interprétation a cependant été remise en question suite aux études expérimentales récentes, qui ont, avec l'aide des calculs théoriques, conduit à la réorganisation des schémas de niveaux du 110,112Cd en termes d’excitations rotationnelles, suggérant la présence d’une variété de formes dans ces noyaux.
Grâce à un récent travail de thèse dans notre groupe, cette nouvelle interprétation a été étendue au noyau du 106Cd. Cependant, il reste plusieurs questions concernant la nature des niveaux observés a basse énergie d’excitation dans ce noyau. De plus, nous avons obtenu des indications que certains états excites peuvent être liés au couplage entre les vibrations du type dit octupolaire (c’est-à-dire le noyau se déforme adoptant une forme de poire) et quadripolaire (le noyau oscille entre les formes allongées et aplaties). Pour vérifier cette hypothèse, une expérience de décroissance bêta de précision a été proposée à TRIUMF (Vancouver, Canada) avec le spectromètre le plus avancé au monde dédié aux mesures de décroissance bêta, appelé GRIFFIN, pour chercher les voies de désintégration faibles dans le schéma de niveaux du 106Cd, et déterminer sans ambiguïté les spins des états excites grâce à l'analyse de corrélations angulaires gamma-gamma. Cette mesure permettra de résoudre les diverses énigmes concernant la structure de ce noyau, notamment la triaxialité de son état fondamental et la coexistence de formes multiples.
L’étudiant sera en charge de l’analyse de cette expérience, qui sera réalisée en 2025. Ensuite, en s’appuyant sur les résultats de cette analyse, elle/il procédera à une réévaluation de sections efficaces de peuplement de niveaux excités dans le 106Cd, qui ont été mesurées avec le spectromètre gamma de nouvelle génération AGATA au GANIL en utilisant la technique d’excitation coulombienne. Grâce à cette combinaison de mesures, nous espérons d’obtenir, pour la première fois dans la charte de noyaux, l’ensemble complet de probabilités de transition entre les états résultant du couplage entre les vibrations du type octupolaire et quadripolaire. Nous procéderons ensuite a l'interprétation des résultats obtenus en collaboration étroite avec des théoriciens.
Ce travail de thèse permettra à l’étudiant de suivre un projet dans son ensemble, de la préparation de l’expérience jusqu’à son interprétation théorique, et de se familiariser avec plusieurs techniques expérimentales de spectroscopie gamma, en utilisant les spectromètres gamma les plus avancés au monde.
Mesures de rendement de fission pour l'évaluation de la chaleur de désintégration du combustible nucléaire usé.
La réaction de fission est un processus violent au cours duquel un noyau lourd est divisé en deux composants, les fragments de fission. La distribution des fragments de fission produits est très large ; plus de 300 isotopes radioactifs différents peuvent être produits lors de la fission et leur désintégration radioactive est une question importante pour la manipulation et le stockage sûr du combustible nucléaire usé.
Le dispositif expérimental disponible au GANIL permet une identification précise et complète des fragments de fission, avant leur désintégration radioactive.
Une campagne expérimentale a été menée au VAMOS en 2024 pour étudier la fission de différents actinides produits dans des réactions de transfert de plusieurs nucléons, sur la base de la technique de cinématique inverse.
Les données obtenues constituent une référence importante pour les modèles nucléaires et les codes de simulation de la chaleur dégagée lors de la désintégration du combustible nucléaire usagé.
Ces données innovantes contr