Modélisation du transfert de spin dans les qubits silicium et germanium

Les qubits de spin en silicium et en germanium ont fait des progrès remarquables ces dernières années. Dans ces dispositifs, l'information élémentaire est stockée sous forme d'une superposition cohérente des états de spin d'un électron ou d'un trou confiné dans une boîte quantique intégrée dans une hétérostructure Si/SiO2 ou SiGe. Ces spins peuvent être manipulés électriquement et sont intriqués par des interactions d'échange, permettant de réaliser les opérations à un ou deux qubits nécessaires au calcul et à la simulation quantique. Grenoble promeut des plateformes de qubits originales basées sur Si et Ge, et détient divers records de durée de vie de spin et d'interactions spin-photon. Au CEA/IRIG, nous accompagnons le développement de ces technologies quantiques avec de la modélisation avancée, en particulier grâce au code TB_Sim capable de décrire des qubits très réalistes jusqu'à l'échelle atomique si nécessaire.
Un porteur de charge et son spin peuvent en être déplacés de manière cohérente entre différentes boîtes quantiques, ce qui permet le transfert d'information quantique et le couplage entre spins distants. La dynamique du transport de spin est cependant complexe en raison des interactions spin-orbite qui couplent le mouvement du porteur à son spin. Le contrôle de ce transport nécessite donc une compréhension complète de ces interactions et de leurs effets sur l'évolution et la cohérence du spin. L'objectif de cette thèse est de modéliser le transport entre qubits de spin Si/Ge en utilisant une combinaison de techniques analytiques et numériques (TB_Sim). Le projet étudiera notamment la manipulation, le transport et l'intrication du spin dans des réseaux de qubits, ainsi que la réponse au bruit et au désordre (décohérence). Le doctorant aura l'opportunité d'interagir avec une communauté dynamique d'expérimentateurs travaillant sur les qubits de spin au CEA et au CNRS.

Near-threshold phenomena in nuclear structure and reactions

Il est proposé d'étudier les effets saillants du couplage entre les états discrets et continus à proximité de divers seuils d'émission de particules en utilisant le modèle en couches dans le plan d'énergie complexe. Ce modèle fournit la formulation unitaire d'un modèle en couches standard dans le cadre du système quantique ouvert pour la description d'états nucléaires bien liés, faiblement liés et non liés. Des études récentes ont démontré l'importance de l'énergie de corrélation résiduelle du couplage aux états du continuum pour la compréhension des états propres, leur énergie et modes de désintégration, au voisinage du canaux de reaction. Cette énergie résiduelle n'a pas encore été étudiée en details. Les études de cette thèse approfondiront notre compréhension des effets structurels induits par le couplage au continuum et apporteront un support aux études expérimentales au GANIL et ailleurs.

Leçons conceptuelles de la causalité indéterminée

Récemment, il a été reconnu que les structures causales en mécanique quantique permettent de concevoir une nouvelle ressource non classique, connue sous le nom de causalité indéterminée, qui ouvre de nouvelles perspectives en information quantique. Malgré des avancées théoriques significatives et quelques réalisations expérimentales, les implications conceptuelles de la causalité indéterminée restent mal comprises. Dans le même temps, la causalité quantique est devenu un élément fondamental du formalisme mathématique afin d’élucider les divergences entre les approches opérationnelles et spatiotemporelles en physique. Elle a déjà facilité une compréhension améliorée de concepts fondamentaux tels que les événements (Vilasini et Renner, Phys. Rev. Lett. 133, 080201), les faits (Brukner, Nature Phys. 16, 1172–1174, 2020), les entrées/sorties (Chiribella et Liu, Comm. Phys. 5, 190, 2022), les systèmes (Grinbaum, Stud. Hist. Phil. Mod. Phys. 58, 22-30, 2017) et le calcul (Araujo et al., Phys. Rev. A 96, 052315, 2017).
Dans cette thèse, le candidat développera une compréhension systématique des leçons conceptuelles de la causalité indéterminée au sein des cadres classiques, quantiques et des théories probabilistes généralisées (GPT). Il examinera la signification fondamentale des configurations bipartites et multipartites, y compris leurs capacités spatio-temporelles et computationnelles. Pour réaliser des progrès significatifs dans le domaine des fondements de la théorie quantique, le candidat cherchera à appliquer la causalité indéterminée pour approfondir notre compréhension de la théorie quantique standard et de ses interprétations.
Les questions de recherche spécifiques incluent :
• Établir des bases conceptuelles pour l'identification des systèmes et des événements à travers le temps, en particulier en relation avec les ordres causaux indéfinis et les scénarios de « l'ami de Wigner ».
• Placer cette discussion fondamentale émergente dans un cadre philosophique et métaphysique plus large.
• Aborder la notion d'agent/observateur en tant qu'entité théorique plutôt que métathéorique.
Des publications sont attendues dans des revues de physique (PRL, PRA, NJP, Quantum) et/ou dans des revues de philosophie de la physique (Philosophy of Physics, BJPS, Found. Phys., SHPMP). Des collaborations sont prévues avec des groupes en France, en Autriche, en Belgique et au Canada.

Peut-on prédire la météo ou le climat?

D'après l'expérience de chacun, prévoir le temps de manière fiable à plus de quelques jours semble être une tâche impossible pour nos meilleures agences météorologiques. Pourtant, nous connaissons tous des exemples de "dictons météorologiques" qui permettent à de vieux sages de prédire le temps qu'il fera demain sans résoudre les équations du mouvement, et parfois mieux que les prévisions officielles. À plus long terme, les modèles climatiques ont permis de prédire assez précisément la variation de la température moyenne de la Terre due aux émissions de CO2 sur une période de 50 ans.

À la fin des années 50 et 60, Lewis Fry Richardson, puis Edward Lorenz ont jeté les bases de la résolution de cette énigme, en s'appuyant sur des observations, des arguments phénoménologiques et des modèles d'ordre inférieur.

Les progrès actuels des mathématiques, de la physique des turbulences et des données d'observation permettent aujourd'hui d'aller au-delà de l'intuition et de tester la validité de l'effet papillon dans l'atmosphère et le climat. Pour cela, nous utiliserons de nouveaux outils théoriques et mathématiques et de nouvelles simulations numériques basées sur la projection des équations du mouvement sur une grille exponentielle permettant d'obtenir des valeurs réalistes/géophysiques des paramètres, à un coût modéré de calcul et de stockage.

L'objectif de ce doctorat est de mettre en œuvre les nouveaux outils sur des observations réelles de cartes météorologiques, afin d'essayer de détecter l'effet papillon sur des données réelles. À plus long terme, l'objectif sera d'étudier l'hypothèse de "l'universalité statistique", de comprendre si et comment l'effet papillon conduit à des statistiques universelles qui peuvent être utilisées pour les prévisions climatiques, et si nous pouvons espérer construire de nouveaux « dictons météorologiques » en utilisant l'apprentissage automatique, permettant de prédire le climat ou le temps sans résoudre les équations.

Top