Contrôle de la turbulence des modes d’électrons piégés à l’aide du chauffage à la résonance cyclotronique électronique
Les performances d’un tokamak sont liées au niveau du transport turbulent. L’instabilité des modes d’électrons piégés est l’une des principales instabilités à l’origine de la turbulence dans les tokamaks. D’autre part, le chauffage à la résonance cyclotronique électronique est un système de chauffage générique des tokamaks. Les deux processus physiques reposent sur des interactions résonantes avec les électrons. Une interaction non linéaire entre les processus résonants est théoriquement possible. L’objectif de la thèse est d’évaluer la possibilité d’exploiter cette interaction non linéaire pour permettre de stabiliser l’instabilité des modes d’électrons piégés au sein des tokamaks à l’aide d’une source de chauffage présente sur de nombreux tokamaks, dont ITER. Cette technique de contrôle pourrait permettre d’améliorer les performances de certains tokamaks sans surcoût.
La thèse reposera sur une compréhension théorique des deux processus étudiés, demandera l’utilisation du code gyrocinétique GYSELA pour modéliser les interactions non linéaires entre processus résonants et comportera un aspect expérimental pour valider le mécanisme de contrôle de la turbulence identifié.
Modélisation du transfert de spin dans les qubits silicium et germanium
Les qubits de spin en silicium et en germanium ont fait des progrès remarquables ces dernières années. Dans ces dispositifs, l'information élémentaire est stockée sous forme d'une superposition cohérente des états de spin d'un électron ou d'un trou confiné dans une boîte quantique intégrée dans une hétérostructure Si/SiO2 ou SiGe. Ces spins peuvent être manipulés électriquement et sont intriqués par des interactions d'échange, permettant de réaliser les opérations à un ou deux qubits nécessaires au calcul et à la simulation quantique. Grenoble promeut des plateformes de qubits originales basées sur Si et Ge, et détient divers records de durée de vie de spin et d'interactions spin-photon. Au CEA/IRIG, nous accompagnons le développement de ces technologies quantiques avec de la modélisation avancée, en particulier grâce au code TB_Sim capable de décrire des qubits très réalistes jusqu'à l'échelle atomique si nécessaire.
Un porteur de charge et son spin peuvent en être déplacés de manière cohérente entre différentes boîtes quantiques, ce qui permet le transfert d'information quantique et le couplage entre spins distants. La dynamique du transport de spin est cependant complexe en raison des interactions spin-orbite qui couplent le mouvement du porteur à son spin. Le contrôle de ce transport nécessite donc une compréhension complète de ces interactions et de leurs effets sur l'évolution et la cohérence du spin. L'objectif de cette thèse est de modéliser le transport entre qubits de spin Si/Ge en utilisant une combinaison de techniques analytiques et numériques (TB_Sim). Le projet étudiera notamment la manipulation, le transport et l'intrication du spin dans des réseaux de qubits, ainsi que la réponse au bruit et au désordre (décohérence). Le doctorant aura l'opportunité d'interagir avec une communauté dynamique d'expérimentateurs travaillant sur les qubits de spin au CEA et au CNRS.
Peut-on prédire la météo ou le climat?
D'après l'expérience de chacun, prévoir le temps de manière fiable à plus de quelques jours semble être une tâche impossible pour nos meilleures agences météorologiques. Pourtant, nous connaissons tous des exemples de "dictons météorologiques" qui permettent à de vieux sages de prédire le temps qu'il fera demain sans résoudre les équations du mouvement, et parfois mieux que les prévisions officielles. À plus long terme, les modèles climatiques ont permis de prédire assez précisément la variation de la température moyenne de la Terre due aux émissions de CO2 sur une période de 50 ans.
À la fin des années 50 et 60, Lewis Fry Richardson, puis Edward Lorenz ont jeté les bases de la résolution de cette énigme, en s'appuyant sur des observations, des arguments phénoménologiques et des modèles d'ordre inférieur.
Les progrès actuels des mathématiques, de la physique des turbulences et des données d'observation permettent aujourd'hui d'aller au-delà de l'intuition et de tester la validité de l'effet papillon dans l'atmosphère et le climat. Pour cela, nous utiliserons de nouveaux outils théoriques et mathématiques et de nouvelles simulations numériques basées sur la projection des équations du mouvement sur une grille exponentielle permettant d'obtenir des valeurs réalistes/géophysiques des paramètres, à un coût modéré de calcul et de stockage.
L'objectif de ce doctorat est de mettre en œuvre les nouveaux outils sur des observations réelles de cartes météorologiques, afin d'essayer de détecter l'effet papillon sur des données réelles. À plus long terme, l'objectif sera d'étudier l'hypothèse de "l'universalité statistique", de comprendre si et comment l'effet papillon conduit à des statistiques universelles qui peuvent être utilisées pour les prévisions climatiques, et si nous pouvons espérer construire de nouveaux « dictons météorologiques » en utilisant l'apprentissage automatique, permettant de prédire le climat ou le temps sans résoudre les équations.
Ajustement d'un modèle d’interaction nucléaire effective et propagation des erreurs statistiques
Au cœur de chaque approche « many-body » utilisée pour décrire les propriétés fondamentales d’un noyau atomique, on retrouve l’interaction effective nucléon-nucléon. Une telle interaction effective doit prendre en compte les effets du milieu nucléaire. Pour l’obtenir, il faut utiliser un protocole d’ajustement complexe qui prend en compte une variété d’observables nucléaires comme les rayons, les masses, les centroïdes des résonances géantes ou encore l’équation d’état de la matière nucléaire autour de la densité de saturation.
Un modèle d’interaction forte très utilisé est celui de Gogny, qui est formé par une combinaison linéaire des constantes de couplages et d’opérateurs avec un facteur de forme radial de type Gaussien [1]. Les constantes de couplages sont déterminées via un protocole d’ajustement sur les propriétés d’un nombre restreint de noyaux, typiquement les noyaux sphériques comme 40-48Ca, 56Ni, 120Sn et 208Pb.
L’objectif premier de cette thèse consiste à développer un protocole d’ajustement de l’interaction nucléaire qui puisse donner accès à la matrice de covariance des paramètres du modèle pour ensuite effectuer une analyse de la propagation des erreurs statistiques sur les observables nucléaires [2].
Après avoir analysé les relations entre paramètres et leurs poids relatifs sur les différentes observables, le doctorant explorera la possibilité de modifier certains termes de l’interaction comme le terme à trois corps ou les effets au-delà du champ moyen.
Le doctorant sera positionné dans une équipe de physiciens nucléaires au sein d’un laboratoire d’étude de physique de l'institut CEA IRESNE situé à Cadarache. Le travail s’effectuera en équipe avec le CEA/DIF. Les principaux débouchés professionnels sont la recherche académique et les organismes de R&D dans le domaine nucléaire.
[1] D. Davesne et al. "Infinite matter properties and zero-range limit of non-relativistic finite-range interactions." Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. "Uncertainty propagation within the UNEDF models." Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.
Modèles microscopiques de structure nucléaire pour étudier le processus de désexcitation dans la fission nucléaire
Le code FIFRELIN est développé au CEA/IRESNE Cadarache afin de fournir une description détaillée du processus de fission et de calculer avec précision toutes les observables de fission pertinentes. Le code repose en grande partie sur la connaissance détaillée de la structure sous-jacente des noyaux impliqués dans le processus de désexcitation post-fission. Dans la mesure du possible, le code s'appuie sur des bases de données de structures nucléaires telles que RIPL-3, qui fournissent des informations précieuses sur les schémas de niveaux nucléaires, les rapports de branchement et d'autres propriétés nucléaires essentielles. Malheureusement, toutes ces quantités n'ont pas été mesurées, des modèles nucléaires sont donc utilisés.
Le développement de modèles nucléaires avancés est la tâche du groupe de théorie nucléaire nouvellement formé à Cadarache, dont l'expertise principale est l'implémentation de solveurs du problème nucléaire à A corps basés sur des interactions nucléon-nucléon effectives.
Le but de cette thèse est de quantifier l'impact de la fonction de force E1/M1 et E2/M2 sur les observables de fission. Actuellement, cette quantité est principalement estimée à l'aide de modèles simples tels que la Lorentzienne généralisée. Le doctorant devra remplacer ces modèles par des théories entièrement microscopiques basées sur l'interaction effective entre les nucléons via les techniques de type QRPA. Une étude préliminaire a démontré que l'utilisation de modèles macroscopiques (Lorentzienne généralisé) ou microscopiques (QRPA) a un impact non négligeable sur les observables de fission.
Les débouchés de la thèse incluent la recherche académique et les labos de R&D nucléaire théorique et appliquée.
Near-threshold phenomena in nuclear structure and reactions
Il est proposé d'étudier les effets saillants du couplage entre les états discrets et continus à proximité de divers seuils d'émission de particules en utilisant le modèle en couches dans le plan d'énergie complexe. Ce modèle fournit la formulation unitaire d'un modèle en couches standard dans le cadre du système quantique ouvert pour la description d'états nucléaires bien liés, faiblement liés et non liés. Des études récentes ont démontré l'importance de l'énergie de corrélation résiduelle du couplage aux états du continuum pour la compréhension des états propres, leur énergie et modes de désintégration, au voisinage du canaux de reaction. Cette énergie résiduelle n'a pas encore été étudiée en details. Les études de cette thèse approfondiront notre compréhension des effets structurels induits par le couplage au continuum et apporteront un support aux études expérimentales au GANIL et ailleurs.
Dynamique de fracture dans des technologies de transfert de couches cristallines
Le Smart Cut™ est une technologie découverte au CEA et désormais utilisée industriellement pour la fabrication de substrats avancés pour l'électronique. Cependant, les phénomènes physiques mis en jeu dans sa mise en œuvre font encore l'objet de nombreuses études au CEA. Dans le Smart Cut™, une fine couche de matériau est transférée d'une plaquette à l'autre en utilisant une étape clé de recuit de fracture durant laquelle une fracture macroscopique s'initie et se propage à plusieurs km/s [i].
____________
L'amélioration de la technologie nécessite une solide compréhension des phénomènes physiques impliqués dans l'étape de fracture. L'objectif de ce projet de doctorat est donc d'étudier les mécanismes impliqués dans l'initiation et la propagation des fractures, ainsi que les vibrations post-fracture.
____________
Sur le site du CEA-Grenoble, avec un intérêt industriel, l'étudiant utilisera et développera les dispositifs expérimentaux existants pour étudier le comportement de la fracture dans les matériaux fragiles, y compris les réflexions laser optiques [iv], l'imagerie synchrotron diffractante résolue dans le temps [iii], et l'imagerie directe ultra-rapide [ii].
En outre, des algorithmes d'analyse de données basés sur python seront développés pour extraire des informations quantitatives des différents ensembles de données. Cela permettra à l'étudiant de déterminer les mécanismes impliqués et d'évaluer l'influence des paramètres de traitement des plaquettes sur le comportement de la fracture, et donc de proposer des méthodes d'amélioration.
Références :
[i] https://pubs.aip.org/aip/apl/article/107/9/092102/594044
[ii] https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024068
[ii] https://journals.iucr.org/j/issues/2022/04/00/vb5040/index.html
[iv] https://pubs.aip.org/aip/jap/article/129/18/185103/158396
Leçons conceptuelles de la causalité indéterminée
Récemment, il a été reconnu que les structures causales en mécanique quantique permettent de concevoir une nouvelle ressource non classique, connue sous le nom de causalité indéterminée, qui ouvre de nouvelles perspectives en information quantique. Malgré des avancées théoriques significatives et quelques réalisations expérimentales, les implications conceptuelles de la causalité indéterminée restent mal comprises. Dans le même temps, la causalité quantique est devenu un élément fondamental du formalisme mathématique afin d’élucider les divergences entre les approches opérationnelles et spatiotemporelles en physique. Elle a déjà facilité une compréhension améliorée de concepts fondamentaux tels que les événements (Vilasini et Renner, Phys. Rev. Lett. 133, 080201), les faits (Brukner, Nature Phys. 16, 1172–1174, 2020), les entrées/sorties (Chiribella et Liu, Comm. Phys. 5, 190, 2022), les systèmes (Grinbaum, Stud. Hist. Phil. Mod. Phys. 58, 22-30, 2017) et le calcul (Araujo et al., Phys. Rev. A 96, 052315, 2017).
Dans cette thèse, le candidat développera une compréhension systématique des leçons conceptuelles de la causalité indéterminée au sein des cadres classiques, quantiques et des théories probabilistes généralisées (GPT). Il examinera la signification fondamentale des configurations bipartites et multipartites, y compris leurs capacités spatio-temporelles et computationnelles. Pour réaliser des progrès significatifs dans le domaine des fondements de la théorie quantique, le candidat cherchera à appliquer la causalité indéterminée pour approfondir notre compréhension de la théorie quantique standard et de ses interprétations.
Les questions de recherche spécifiques incluent :
• Établir des bases conceptuelles pour l'identification des systèmes et des événements à travers le temps, en particulier en relation avec les ordres causaux indéfinis et les scénarios de « l'ami de Wigner ».
• Placer cette discussion fondamentale émergente dans un cadre philosophique et métaphysique plus large.
• Aborder la notion d'agent/observateur en tant qu'entité théorique plutôt que métathéorique.
Des publications sont attendues dans des revues de physique (PRL, PRA, NJP, Quantum) et/ou dans des revues de philosophie de la physique (Philosophy of Physics, BJPS, Found. Phys., SHPMP). Des collaborations sont prévues avec des groupes en France, en Autriche, en Belgique et au Canada.
Modélisation de la polarisation de charges nucléaires des fragments de fission pour l’évaluation des rendements de fission : applications aux noyaux d’intérêt pour le cycle du combustible
La thématique des données nucléaires est centrale pour les applications de l’énergie nucléaire, constituant le pont entre les propriétés « microscopiques » des noyaux et les valeurs clés « macroscopiques » utiles aux calculs de physique des réacteurs et du cycle. Le Laboratoire d’études de Physique de l’institut IRESNE du CEA Cadarache est engagé dans l’évaluation de ces données nucléaires dans le cadre d’un programme développé au sein du groupe JEFF (animé par l’Agence de l’Energie Nucléaire) et d’un Coordinated Research Project de l’AIEA. Le développement récent d’une nouvelle méthodologie d’évaluation des rendements de fission (taux de production des produits de fission après l’émission des neutrons prompts) induite par neutrons thermiques a permis d’améliorer les précisions des évaluations proposées pour la bibliothèque JEFF-4.0 en fournissant leur matrice de covariances. Pour étendre les évaluations de rendements de fission induites par neutrons thermiques au spectre des neutrons rapides, il est nécessaire de développer un couplage des outils d’évaluation actuels avec des modèles de rendements de fission avant émission des neutrons prompts. Ce couplage est indispensable pour extrapoler les études déjà réalisées sur la fission thermique de l’235U et du 239Pu aux noyaux moins connus expérimentalement (241Pu, 241Am, 245Cm) ou étudier la dépendance de ces rendements avec l’énergie cinétique des neutrons incidents. Une des composantes essentielles manquantes est la description de la distribution en charge nucléaire (Z) en fonction de la masse des fragments de fission et de l’énergie du neutron incident. Ces distributions sont caractérisées par un paramètre clé : la polarisation de charge. Cette polarisation traduit un excès (respectivement défaut) de proton dans le pic des fragments légers (respectivement lourds) par rapport à la densité de charges moyenne du noyau fissionnant. Si cette quantité a été mesurée pour la réaction 235U(nth,f), elle est lacunaire pour d’autres énergies de neutrons ou d’autres systèmes fissionnants. Les perspectives de ce sujet portent autant sur l’impact de ces nouvelles évaluations sur les grandeurs-clés pour les applications électronucléaires qu’à la validation des mécanismes de fission décrit par les modèles microscopiques de fission.
Etude de la dynamique des réacteurs rapides à sels fondus en convection naturelle
Les réacteurs à sels fondus (RSF) sont présentés comme des systèmes intrinsèquement stables vis-à-vis des perturbations de réactivité du fait du couplage entre température du sel et puissance nucléaire conduisant à un comportement homéostatique du réacteur. Néanmoins, bien que les RSF présentent des caractéristiques intéressantes pour la sûreté, le faible retour d’expérience limite nos connaissances sur leur comportement dynamique, qui restent encore parcellaires. Ce sujet de thèse propose de contribuer au développement d’une méthodologie d’analyse de la dynamique des RSF visant à caractériser les phénomènes complexes de couplage neutronique–thermohydraulique intervenant lors d’un fonctionnement en régime de convection naturelle, ainsi qu’à identifier des séquences de transitoires potentiellement instables, à hiérarchiser les phénomènes physiques source de ces instabilités et à proposer des modèles physiques de ces phénomènes.
Ces travaux contribueront à la définition d’une méthodologie orientée sûreté en soutien aux travaux de conception des RSF à partir de l’étude du comportement dynamique du réacteur en transitoire à travers l’analyse dimensionnelle et l’étude de la stabilité de l’écoulement. Cette méthodologie vise à définir des critères simples et robustes pour garantir la sûreté intrinsèque d’un RSF à spectre rapide, en fonction de ses paramètres de conception et d’opération permettant de respecter les limites du domaine de fonctionnement.
Ce travail de thèse se situe à la croisée de l’analyse théorique des phénomènes physiques régissant le comportement du réacteur, en particulier autour de l’étude des régimes instables (de nature oscillatoire ou divergente) dus au couplage neutronique-thermohydraulique en convection naturelle, et de la mise en place d’outils analytiques et numériques pour la réalisation des calculs visant à caractériser ces phénomènes.
Le doctorant sera positionné au sein d’une unité de recherche sur les systèmes nucléaires innovants. Il développera des compétences en modélisation des RSF et en analyse de sûreté. Il pourra valoriser ses travaux auprès de la communauté internationale de recherche sur les RSF.