Architecture innovante et traitement du signal pour des télécommunications optiques mobiles

Les communications optiques en espace libre reposent sur la transmission de données par la lumière entre deux points distants, sans recourir à des fibres ou à des câbles. Cette approche s’avère particulièrement intéressante lorsque les connexions filaires sont difficiles à déployer ou trop coûteuses.
Cependant, ces liaisons sont fortement affectées par les conditions atmosphériques : brouillard, pluie, poussières et turbulences thermiques atténuent ou déforment le faisceau lumineux, entraînant une dégradation notable de la qualité de la communication. Les solutions existantes restent coûteuses et limitées, tant du point de vue des dispositifs optiques de compensation que des algorithmes de traitement du signal.

Dans ce cadre, la thèse vise à concevoir des liaisons optiques mobiles performantes et robustes, capables de s’adapter à des environnements dynamiques et perturbés. L’étude portera notamment sur l’exploitation de dispositifs de type Optical Phased Array (OPA) sur Silicium — une technologie issue des systèmes LiDAR « low cost » — offrant une voie prometteuse vers des architectures compactes, intégrées et à faible coût.
L’orientation principale des travaux concernera le développement d’approches algorithmiques avancées pour le traitement et la compensation du signal. Le ou la doctorant·e sera amené·e à concevoir un environnement de simulation dédié, permettant d’évaluer et de valider les choix architecturaux et les stratégies algorithmiques avant toute expérimentation pratique.

L’objectif global est de proposer une architecture intégrée, flexible et fiable, garantissant la continuité des communications optiques en mouvement, avec des applications potentielles dans les domaines aérien, spatial et terrestre.

Localisation et Cartographie Coopératives via des Méthodes d’Apprentissage Exploitant les Multi-trajets Radio

Dans le cadre de cette thèse, on se propose d'explorer le potentiel des méthodes d'apprentissage machine (ML) pour assurer des fonctions simultanées de localisation et de cartographie (SLAM), en s’appuyant sur des signaux multi-trajets transmis entre plusieurs dispositifs radio coopératifs.
L'idée consiste à identifier certaines caractéristiques des canaux de propagation observés conjointement sur plusieurs liens radio, afin de déterminer les positions relatives des dispositifs radio mobiles, ainsi que celles d’objets passifs présents dans leur voisinage. Ces caractéristiques radio reposent typiquement sur les temps d'arrivée d‘échos multiples des signaux transmis. L'approche envisagée doit alors bénéficier de la corrélation de ces trajets multiples au gré du déplacement des dispositifs radio, ainsi que de la diversité spatiale et de la redondance d’information autorisées par la coopération entre ces mêmes dispositifs. Les solutions développées seront évaluées sur la base de mesures indoor collectées à partir des dispositifs ultra large bande intégrés, ainsi que de données synthétiques générées à l'aide d'un simulateur de type « tracer de rayons ».
Les applications possibles concernent la navigation de groupe au sein d’environnements complexes et/ou inconnus (ex. flottes de drones ou de robots, pompiers...).

Cadre formel pour la spécification et la vérification de flots de communication de processus distribués dans le Cloud

Les clouds sont constitués de serveurs interconnectés via internet, sur lesquels on peut implémenter des systèmes faisant usages d’applications et de bases de données déployées sur les serveurs. L’informatique basée sur les clouds gagne considérablement en popularité, y compris pour y déployer des systèmes critiques. De ce fait, disposer d’un cadre formel pour raisonner sur ce type de systèmes devient une nécessité. Une exigence sur un tel cadre est qu’ils permettent de raisonner sur les concepts manipulés dans un cloud, ce qui inclue naturellement la capacité à raisonner sur des systèmes distribués, composés de sous-systèmes déployés sur différentes machines et interagissant par passage de messages pour réaliser des services. Dans ce contexte, la facilité à raisonner sur les flots de communications est un élément central. L'objectif de cette thèse est de définir un cadre formel outillé dédié à la spécification et la vérification de systèmes déployés sur des clouds. Ce cadre capitalisera sur le cadre formel des "interactions". Les interactions sont des modèles dédiés à la spécification des flots de communications entre différents acteurs d'un système. Les travaux de thèse étudieront comment définir des opérateurs de structuration (enrichissement, composition) et de raffinement pour permettre de mettre en œuvre des processus de génie logiciel classique en se basant sur les interactions.

Analyse et conception de surfaces à impédance à dispersion contrôlée

L'ingénierie de la dispersion (DE) désigne le contrôle de la propagation des ondes électromagnétiques dans une structure en modulant la relation entre la fréquence et la vitesse de phase. Grâce à des matériaux et des surfaces artificiellement conçus, il est possible d’ajuster cette relation afin d’obtenir des comportements de propagation non conventionnels, permettant ainsi un contrôle précis des effets dispersifs du système. Dans le domaine des antennes, le DE peut améliorer plusieurs aspects essentiels des performances en rayonnement, notamment la largeur de bande en gain, la précision de balayage du faisceau et, plus généralement, la réduction des distorsions inhérentes aux variations de fréquence. Il peut également permettre des fonctionnalités supplémentaires, telles que le fonctionnement multibande ou le comportement multifocal dans des antennes à lentilles ou réflecteurs.

Cette thèse vise à étudier les phénomènes physiques régissant le contrôle des vitesses de phase et de groupe dans des surfaces artificielles bidimensionnelles présentant des impédances effectives dépendantes de la fréquence. Une attention particulière sera portée aux architectures à alimentation spatiale, telles que les réseaux transmetteurs et réflecteurs, où la dispersion joue un rôle déterminant. L’objectif est d’établir des formulations analytiques permettant de contrôler simultanément le retard de groupe et le retard de phase, de développer des modèles généraux et d’évaluer les limites fondamentales de ces systèmes en termes de performances en rayonnement. Ce travail est particulièrement pertinent pour les antennes à très fort gain, domaine dans lequel l’état de l’art reste limité. Les conceptions actuelles basées sur le DE présentent généralement une bande passante étroite, et aucune solution compacte à très fort gain (> 35 dBi) ne parvient encore à surmonter les dégradations liées à la dispersion, telles que la baisse de gain ou le dépointage du faisceau.

Le doctorant développera des outils théoriques et numériques, étudiera de nouveaux concepts de cellules unitaires périodiques pour les surfaces d’impédance, et concevra des architectures d’antennes avancées exploitant des principes tels que le délai de temps réel, le fonctionnement multibande à ouverture partagée ou la focalisation en champ proche avec minimisation des aberrations chromatiques. Le projet explorera également des technologies de fabrication alternatives afin de dépasser les contraintes des procédés classiques de PCB et de libérer de nouvelles capacités de contrôle de la dispersion.

Gestion de réseau pilotée par l'IA avec de grands modèles LLMs

La complexité croissante des réseaux hétérogènes (satellitaire, 5G, IoT, TSN) nécessite de faire évoluer la gestion de réseau. Le Réseau Basé sur l'Intention (IBN), bien qu'avancé, se heurte encore à la difficulté de traduire des intentions de haut niveau en configurations techniques sans ambiguïté. Ce travail propose de lever ce verrou en exploitant les Grands Modèles de Langage (LLM) comme interface cognitive pour une automatisation complète et fiable.
Cette thèse vise à concevoir et développer un framework IBN-LLM pour créer le cerveau cognitif d'une boucle de contrôle fermée au-dessus du SDN. Le travail se concentrera sur trois défis majeurs : 1) développer un traducteur sémantique fiable du langage naturel vers les configurations réseau ; 2) concevoir un Moteur de Vérification déterministe (via simulations ou jumeaux numériques) pour prévenir les « hallucinations » des LLM ; et 3) intégrer une capacité d'analyse en temps réel (RAG) pour l'Analyse de Cause Racine (RCA) et la génération proactive d'intentions d'optimisation.
Nous attendons la conception d’une architecture IBN-LLM intégrée aux contrôleurs SDN, ainsi que des méthodologies pour la vérification formelle des configurations. La contribution principale sera la création d'un modèle basé sur LLM capable d'effectuer la RCA et de générer des intentions d'optimisation en temps réel. La validation de l'approche sera assurée par un prototype fonctionnel (PoC), dont l'évaluation expérimentale permettra de mesurer précisément les performances en termes de précision, de latence et de résilience.

Top