Localisation et Cartographie Coopératives via des Méthodes d’Apprentissage Exploitant les Multi-trajets Radio

Dans le cadre de cette thèse, on se propose d'explorer le potentiel des méthodes d'apprentissage machine (ML) pour assurer des fonctions simultanées de localisation et de cartographie (SLAM), en s’appuyant sur des signaux multi-trajets transmis entre plusieurs dispositifs radio coopératifs. L'idée consiste à identifier certaines caractéristiques des canaux de propagation observés conjointement sur plusieurs liens radio, afin de déterminer les positions relatives des dispositifs radio mobiles, ainsi que celles d’objets passifs présents dans leur voisinage. Ces caractéristiques radio reposent typiquement sur les temps d'arrivée d‘échos multiples des signaux transmis. L'approche envisagée doit alors bénéficier de la corrélation de ces trajets multiples au gré du déplacement des dispositifs radio, ainsi que de la diversité spatiale et de la redondance d’information autorisées par la coopération entre ces mêmes dispositifs. Les solutions développées seront évaluées sur la base de mesures indoor collectées à partir des dispositifs ultra large bande intégrés, ainsi que de données synthétiques générées à l'aide d'un simulateur de type « tracer de rayons ». Des applications possibles concernent la navigation de groupe au sein d’environnements complexes et/ou inconnus (ex. flottes de drones ou de robots, pompiers...).

Disques Magnétiques comme Transducteurs de Moment Angulaire

Le sujet proposé est un projet collaboratif visant à exploiter les disques magnétiques suspendus en tant que nouveaux transducteurs micro-ondes du moment angulaire orbital. Notre objectif est de développer des modulateurs opto-mécaniques ultra-fidèles fonctionnant à des fréquences de l'ordre du GHz en intégrant des matériaux magnétiques dans des composants optiques. Ce concept innovant découle des progrès récents dans l'étude des lois de conservation du moment angulaire des modes magnétiques dans les cavités axi-symétriques. La conception que nous proposons permet de réaliser une interconversion cohérente entre la gamme de fréquences des micro-ondes dans laquelle fonctionnent les réseaux sans fil ou les ordinateurs quantiques et celle des réseaux optiques, qui constitue la gamme de fréquences optimale pour les communications à longue distance. À cet égard, notre proposition ne se contente pas d’introduire de nouvelles applications de la magnonique dans le domaine de l'optique qui n'avaient pas été envisagées auparavant, mais elle jette également un pont entre la communauté spintronique et ceux des communautés électronique et quantique.
Les déformations élastiques sont générées ici par la dynamique de l'aimantation à travers le tenseur magnéto-élastique et son couplage sans contact à un circuit micro-ondes. Notre étude se concentrera sur des structures microniques en grenat magnétique monocristallin intégrées dans des guides d'ondes ou des cavités photoniques en GaAs. En outre, nous proposons la fabrication de structures suspendues afin de minimiser les pertes d'énergie (élastiques ou optiques) à travers le substrat.
Le premier défi est de produire des hétérostructures hybrides intégrant des films de grenat de haute qualité avec des semi-conducteurs. Nous proposons une approche nouvelle basée sur l’élaboration de films de grenat magnétique d'épaisseur micronique, obtenus par épitaxie en phase liquide (LPE) sur un substrat de gadolinium-gallium-grenat (GGG). L'originalité consiste à coller le film retourné sur une tranche de semi-conducteur, puis à polir mécaniquement le substrat de GGG. La multicouche obtenue sera ultérieurement gravée par des techniques de lithographie standard.
Le deuxième défi est d'aller au-delà de l'excitation des modes uniformes et de cibler les modes avec un moment angulaire orbital en tant qu'encodeurs de quanta arbitrairement grands de nJ? pour des communication multiplexés multi-canaux ou pour définir des registres d'états quantiques multi-niveaux. On tirera parti des avancées récentes dans le couplage spin-orbite entre les ondes de spin azimutales ainsi que dans la diffusion élastique des magnons sur les tenseurs magnéto-cristallins anisotropes. Dans ce projet, nous voulons également aller au-delà de l'état uniformément aimanté et exploiter la capacité de modifier de façon continue la texture magnétique d'équilibre dans la direction azimutale comme moyen d'ingénierie des règles de sélection et donc accéder de manière cohérente à des symétries de modes qui seraient autrement cachées.

Etudes avancées de la Représentation Sémantique, de l'Alignement et du Raisonnement dans les Systèmes de Communication Multi-Agents pour les Réseaux 6G

Les communications sémantiques représentent un domaine de recherche émergent et transformateur, où l'objectif se déplace de la transmission de simples données brutes à celle d'informations significatives. Bien que les premiers modèles et solutions de conception aient établi des principes fondamentaux, ils reposent souvent sur des hypothèses fortes concernant l'extraction, la représentation et l'interprétation du contenu sémantique. L'arrivée des réseaux 6G introduit de nouveaux défis, en particulier avec le besoin croissant de systèmes multi-agents où plusieurs agents pilotés par l'intelligence artificielle (IA) interagissent de manière fluide.
Dans ce contexte, le défi de l'alignement sémantique devient crucial. La littérature existante sur les communications sémantiques multi-agents suppose fréquemment que tous les agents partagent un cadre d'interprétation et de compréhension commun, ce qui est rarement le cas dans des scénarios pratiques. Des représentations mal alignées peuvent entraîner des inefficacités de communication, une perte d'informations critiques et des malentendus.
Cette recherche doctorale vise à faire progresser l'état de l'art en explorant les principes de représentation sémantique, d'alignement et de raisonnement dans des environnements multi-agents IA au sein des réseaux de communication 6G. L'étude examinera comment les agents peuvent aligner dynamiquement leurs modèles sémantiques, garantissant une interprétation cohérente des messages tout en tenant compte des différences de contexte, d'objectifs et de connaissances préalables. En s'appuyant sur des techniques issues de l'intelligence artificielle, telles que l'apprentissage automatique, l'alignement d'ontologies et le raisonnement multi-agents, l'objectif est de proposer des cadres novateurs qui améliorent l'efficacité et l'efficience des communications dans des environnements multi-agents. Ce travail contribuera à des systèmes de communication plus adaptatifs, intelligents et sensibles au contexte, essentiels à l'évolution des réseaux 6G.

Amélioration de la sécurité des communications grâce à la conception d'émetteurs-récepteurs plus rapides que Nyquist

Face à la demande croissante en capacité de transmission des réseaux de communication, il est essentiel d'explorer des techniques innovantes qui augmentent l'efficacité spectrale tout en maintenant la fiabilité et la sécurité des liens de transmission. Ce projet propose une modélisation théorique approfondie des systèmes Faster-Than-Nyquist (FTN) accompagnée de simulations et d'analyses numériques afin d’évaluer leurs performances dans différents scénarios de communication. L'étude s'efforcera d'identifier les compromis nécessaires pour maximiser le débit de transmission, tout en tenant compte des contraintes liées à la complexité de mise en œuvre et à la sécurité des transmissions, un enjeu crucial dans un environnement de plus en plus vulnérable aux cybermenaces. Ce travail permettra d’identifier les opportunités d'augmentation de capacité, tout en mettant en évidence les défis technologiques et les ajustements indispensables à une adoption généralisée de ces systèmes pour des liaisons critiques et sécurisées.

Capteur quantique-radiofréquence hybridé

A travers l’action exploratoire Carnot SpectroRF, le CEA Leti s’implique dans les systèmes de capteurs radiofréquences à base de spectroscopie optique atomique. L’idée sous-jacente de ce développement repose sur le fait que ces systèmes offrent des performances de détection exceptionnelles. Avec notamment, une sensibilité´ élevée (~nV.cm-1.Hz-0.5), des bandes passantes très larges (MHz- THz), une taille indépendante de la longueur d'onde (~cm) et une absence de couplage avec l'environnement. Ces avantages surpassent les capacités des récepteurs conventionnels a` base d'antennes pour la détection des signaux RF.
L'objectif de cette thèse est d'investiguer une approche hybride pour la réception de signaux radiofréquences, en combinant une mesure de spectroscopie atomique basée sur des atomes de Rydberg avec la conception d'un environnement proche à base de métal et/ou de matériau chargé pour la mise en forme et l'amplification locale du champ, que ce soit par l'utilisation de structures résonantes ou non, ou de structures focalisantes.
Dans le cadre de ces travaux, la question scientifique principale consiste à déterminer les opportunités et limites de ce type d’approche en formulant analytiquement les limites de champs imposables aux atomes de Rydberg, que ce soit en valeur absolue, en fréquence ou dans l’espace, et cela pour une structure donnée. L’approche analytique sera agrémentée de simulations EM pour la conception et la modélisation de la structure associée au banc de spectroscopie optique atomique. La caractérisation finale se fera par mesure dans un environnement électromagnétique contrôlé (chambre anéchoïque).
Les résultats obtenus permettront d'effectuer une comparaison modèle-mesures. Les modélisations analytiques ainsi que les limites théoriques qui en découlent donneront lieu à des publications sur des sujets qui n’ont pas encore fait l'objet d'investigations dans l’état de l’art. Les structures développées dans le cadre de ces travaux de thèse pourront faire l'objet de brevets directement valorisables par le CEA.

Antennes miniatures Super-gain à polarisation circulaire et dépointage électronique de faisceau

Le contrôle du rayonnement (forme, polarisation) des antennes est un élément clé pour les systèmes de communications actuels et du futur. Focaliser le rayonnement de l’antenne dans une direction privilégiée permet notamment d’adresser des applications qui nécessitent du filtrage spatial. Dans le contexte particulier de l’internet des objets (IoT) où plusieurs systèmes ou objets communicants peuvent cohabiter, le filtrage spatial amené par les antennes directives permet de favoriser la communication avec des objets sélectionnés sans perturber les systèmes environnants, puisque l’énergie est focalisée uniquement dans la direction de l’objet d’intérêt. Egalement, focaliser l’énergie rayonnée dans un secteur angulaire réduit permet de limiter les pertes d’énergie dans les autres directions et ainsi limiter la consommation et favoriser l’autonomie des batteries des objets communicants. Cependant, les techniques classiques pour améliorer la directivité du rayonnement conduisent généralement à une augmentation significative de la taille de l’antenne. Par conséquence, l’intégration d’antennes directives dans les objets communicants compacts reste limitée. Cette difficulté est particulièrement critique pour les gammes de fréquences inférieures à 3 GHz lorsqu’on vise une intégration dans des objets dont les dimensions sont de l’ordre de quelques centimètres. Des antennes avec une directivité et un gain importants, multi-bandes ou large bande, une taille réduite, à polarisation linéaire ou circulaire et avec la possibilité de dépointage électronique du faisceau sont nécessaires pour le développement de nouvelles applications dans le domaine des objets communicants. Les études récentes réalisées par le CEA ont permis la démonstration des potentialités des réseaux compacts d’antennes à élément parasites super directifs et le développement conjoint d’une expertise spécifique dans ce domaine. Les travaux de thèse se dérouleront au CEA Leti Grenoble au sein du Laboratoire Antennes Propagation et Couplage Inductif (LAPCI). Les principaux objectifs de ce travail de thèse sont : 1. Contribution au développement d’outils numériques pour la conception et l’optimisation de réseaux compacts et super directifs, super gain ou à formation de faisceau ; 2. Le développent de nouvelle sources élémentaires pour les réseaux d’antennes compacts ; 3. La réalisation d’un réseau à polarisation circulaire compact super gain et avec dépointage de faisceau. Les travaux à mener combineront études théoriques, développements de modèle et outils logiciels, conceptions par simulation électromagnétique 3D et expérimentations sur prototypes en laboratoire de métrologie des champs électromagnétiques.

Transmetteur hybride large bande pour les futurs systèmes sans fil

Cette offre de thèse s’inscrit dans une démarche de réduction de la consommation d’énergie ainsi que de l’empreinte carbone des futurs systèmes sans fil par l’investigation d’architectures innovantes de transmetteurs (TX) possédant une forte efficacité énergétique. L’objectif de cette thèse est d’élaborer une nouvelle architecture de TX pour les standards 5G et 6G. Différentes techniques telle que la modulation de charge ou d’alimentation ont démontré une augmentation de l’efficacité des TX par le passé, mais l’augmentation de la bande instantanée requise par les nouveaux standards de communication limite le bénéfice de ces techniques. Au cours de cette thèse, le candidat développera une nouvelle architecture de TX hybride qui associera à la fois la modulation de charge ainsi que la modulation d’alimentation. Plus précisément, le candidat développera une méthode dédiée de co-design entre l’amplificateur de puissance et le modulateur d’alimentation qui permettra d’adresser les bandes 6G-FR3 (10GHz+) avec un fort PAPR (>10dB) et des signaux large bande (>200MHz).
Le candidat rejoindra le laboratoire d’architecture intégré radiofréquence (LAIR) où de nombreuses compétences (étude system, IC design and layout ...) et domaines d’expertise sont représentés (RF power, Low power RF, RF sensors, High-speed mmW). Au cours de sa thèse, le candidat analysera et modélisera de nouvelles architectures de TX, réalisera le design ainsi que le layout du circuit intégré afin de réaliser et valider un démonstrateur.

Lien :
- http://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/Plateforme-Conception.aspx
- https://www.youtube.com/watch?v=da3x89qxCHM

Profil recherché :
• Diplômé d’une école d’ingénieurs ou d’un master en électronique ou microélectronique
• Connaissance en technologie transistor (CMOS, Bipolar, GaN…) et en conception analogue/RF
• Expérience sur les logiciels ADS et/ou Cadence
• Compétences de bases en programmation (Python, Matlab…)
• Une première expérience en conception de circuit intégré serait appréciée

Contacts : Guillaume.robe@cea.fr, Pascal.reynier@cea.fr

Mots clés : Amplificateur de puissance, Modulation de charge, Modulation d’alimentation, module radiofréquence

Fondements du raisonnement sémantique pour une coopération renforcée de l'IA en communications 6G multi-agents

La 6G intégrera la 5G et l'IA pour fusionner les espaces physiques, cybernétiques et de sapience, transformant les interactions réseau, révolutionnant la prise de décision pilotée par l'IA, et modifiant radicalement la perception des concepts fondamentaux d'information et de fiabilité. Cela nécessite une intégration native et conçue dès l'origine entre l'IA et les systèmes de communication. Les technologies 5G actuelles ne permettent pas un tel changement. La 5G se limite à "téléporter aveuglément" les données à travers le réseau sans comprendre a priori leur pertinence pour les destinataires. Par conséquent, les résultats des algorithmes d'IA restent confinés à des reconnaissances de motifs sophistiquées et à des corrélations statistiques, une limitation majeure des systèmes actuels d’information intelligente.
Pour accompagner cette révolution avec l'IA, le concept émergent de communications sémantiques et orientées objectifs transforme le traitement des informations en permettant à l'IA de collecter, partager et traiter les données de manière sélective en fonction de leur pertinence, valeur ou actualité pour les destinataires. Contrairement à la 5G, qui privilégie le transport de données volumineuses, les communications sémantiques mettent l'accent sur un partage de connaissances compressées et significatives pour améliorer le raisonnement de l'IA, s'adapter à des environnements variés et dépasser les limitations actuelles en matière de prise de décision intelligente.
Cette recherche doctorale explore trois domaines d'avant-garde : (1) les communications sémantiques, où l'état de l'art actuel se concentre principalement sur la compression et la robustesse pilotées par l'IA ; (2) l'intégration de la communication et de la détection, combinant l'échange de données et la détection environnementale pour des applications économes en ressources ; et (3) les avancées dans l'apprentissage compositionnel et le raisonnement de l'IA, permettant aux systèmes intelligents de traiter des données complexes et multimodales.
Cette recherche vise à développer des modèles abstraits de composition conceptuelle que les agents d'IA peuvent utiliser pour comprendre et raisonner sur des structures sémantiques complexes. Dans ce contexte, le doctorant concevra de nouvelles méthodologies de raisonnement compositionnel alignées sur les exigences des communications multi-utilisateurs et orientées objectifs. Les modèles permettront des échanges d'informations compositionnelles où les agents d'IA pourront former, échanger et inférer intuitivement à partir de représentations sémantiques composées. En se concentrant sur la compositionnalité et l'adaptabilité inhérentes aux échanges sémantiques, cette recherche contribuera à la prochaine génération de systèmes de communication intelligents et contextuellement adaptés. Ces systèmes permettront des échanges d'informations plus précis et significatifs entre les agents d'IA, améliorant leur prise de décision et leurs capacités de coopération dans diverses applications, des essaims robotiques autonomes aux dispositifs IoT connectés dans les villes intelligentes et autres environnements intelligents. Cette recherche doctorale évaluera les concepts théoriques novateurs proposés par rapport aux solutions actuelles en matière de communications sémantiques grâce à des simulations numériques.

Conception d'antennes électriquement petites pour des applications d'objets connectés

Ce projet de doctorat se concentre sur la conception d'antennes innovantes adaptées aux applications de l'Internet des objets (IoT), en répondant aux défis majeurs liés à la taille, aux performances et à l'intégration. Le contexte scientifique repose sur la demande croissante d'antennes électriquement petites et efficaces, capables de s'intégrer parfaitement aux dispositifs IoT tout en maintenant une efficacité de rayonnement élevée. Le travail proposé implique la création d'antennes électriquement petites, optimisées pour leurs performances, leur capacité de réglage et leur compatibilité avec les environnements électroniques et métalliques. Les conceptions exploreront divers types d'antennes, tels que les boucles, les antennes de type F, les monopôles chargés au sommet et les structures en cage métallique, en intégrant des composants réglables de pointe.

Les objectifs principaux incluent le positionnement des performances de ces antennes par rapport aux limites physiques théoriques (par exemple travaux de Chu/Gustafsson), l'analyse des pertes diélectriques et métalliques, ainsi que l'obtention d'une reconfigurabilité double bande adaptée aux normes de communication. Le candidat utilisera des outils de simulation électromagnétique, développera des modèles comportementaux et réalisera des prototypes ainsi que des tests de performance dans des chambres anéchoïques. Les résultats attendus sont des antennes miniatures hautement efficaces et agiles en fréquence, qui feront progresser la compréhension des phénomènes de rayonnement électromagnétique pour les antennes compactes et répondront aux exigences des objets connectés de demain.

Top