Monitoring in situ du vieillissement des circuits amplificateurs de puissance RF pour une écoconception et une durée de vie étendue

L'industrie des semi-conducteurs, et en particulier celle des circuits radiofréquences (RF), fait face à des défis critiques liés à l'écoconception et à l'éco-innovation. Ces enjeux incluent la nécessité de prolonger la durée de vie des circuits tout en répondant aux attentes des marchés émergents tels que la 5G et la future 6G. Parmi ces circuits, les amplificateurs de puissance (PA) occupent une place centrale, étant à la fois des composants critiques en termes de performance énergétique et des cibles privilégiées pour l'amélioration de leur robustesse face au vieillissement et à leur éventuelle réutilisation.

Le monitoring in situ du vieillissement des PA représente une voie prometteuse pour développer des solutions à la fois innovantes et durables. A ce titre, ce sujet s'inscrit pleinement dans les stratégies d'écoconception en exploitant des plateformes technologiques avancées telles que les technologies CMOS SOI actuelles et futures, tout en intégrant les contraintes industrielles à travers des collaborations stratégiques existantes avec des partenaires majeurs du CEA Leti.

Cette thèse vise à concevoir une solution innovante de monitoring in situ pour évaluer et compenser le vieillissement des amplificateurs de puissance, prolongeant ainsi leur durée de vie grâce à des stratégies de réutilisation et d’autocorrection. Pour ce faire, elle reposera sur des méthodologies et des circuits adaptés à des cas concrets. Ainsi, l’ambition sera de développer une nouvelle génération de circuits robustes et durables, intégrant des mécanismes intelligents de gestion du vieillissement. En adoptant une approche d’écoconception, ce travail aura pour but de répondre aux défis environnementaux tout en renforçant la compétitivité industrielle des technologies CMOS SOI.

Fiabilité des transistors GaN pour applications 5G millimétrique

Les composants en Nitrure de Gallium sont de très bons candidats pour les applications d’amplification de puissance aux fréquences millimétriques de type 5G (~30GHz), de par leur densité de puissance et leur efficacité énergétique. Cependant, ces technologies sont couramment intégrées sur des substrats en Carbure de Silicium, performants thermiquement mais chers et de faible diamètres. La technologie GaN/Si du CEA-LETI permet d’obtenir des performances à l’état de l’art mondial en bande Ka, avec des densités de puissance qui peuvent rivaliser avec les technologies GaN/SiC. Cette technologie basée sur des substrats Si 200mm est compatible avec les salles blanches Silicium, promettant de plus grands volumes disponibles tout en réduisant les coûts. De plus, les niveaux de back-end utilisés offrent des possibilités pour une intégration hétérogène dense avec des circuits digitaux, ouvrant la voie vers des circuits intégrés 3D hétérogènes.
Cependant, peu d’études existent à l’heure actuelle sur les mécanismes de dégradation propre à ce type de composants en utilisant des procédés de fabrication CMOS-compatibles: barrières avancées, grilles MIS SiN in-situ, contacts ohmiques. Il est indispensable de connaître ces effets afin d’une part de qualifier la technologie et d’autre part afin de mieux comprendre le fonctionnement du dispositif et ses éventuelles faiblesses/limitations.
Le but de ces travaux de thèse est d’étudier les phénomènes mémoires parasites ainsi que le vieillissement de ces transistors en conditions opérationnelles à l’aide de mesures DC & RF, liées à la physique du composant. Les transistors seront soumis à différentes conditions de stress électrique afin de modéliser les dérives de leurs paramètres DC & RF : mesures de pièges (BTI & DCTS), influence du procédé de fabrication et de la technologie de grille (Schottky vs MIS), de la barrière de confinement (GaN:C, back-barrier AlGaN, etc…). Des analyses de claquage de diélectrique (TDDB) seront effectués sur les grilles MIS, en condition DC & RF afin d’évaluer l’amélioration du temps de claquage en fonction de la fréquence du signal, de manière analogue aux diélectriques utilisés sur CMOS. Enfin, des stress électriques seront menés en conditions DC et RF (stress RF CW) afin d’évaluer et de modéliser le vieillissement des transistors en conditions opérationnelles.

Module d’auto-adaptation d’antenne et synthèse d’impédance intégré dans la bande sub-6 GHz pour les applications RF de nouvelle génération

L’adoption croissante des systèmes RF sub-6 GHz pour la 5G, l’IoT et les technologies portables a créé une demande critique pour des solutions compactes, efficaces et adaptatives afin d’améliorer le transfert d’énergie, de réduire les effets de désaccord liés à l’environnement, et d’offrir des capacités avancées de détection. Cette thèse propose un système innovant sur puce (SoC) intégrant une unité d’accord d’antenne (ATU) et un module d’impédance synthétisée (SIM) pour répondre à ces défis. En combinant la mesure d’impédance in situ et une réadaptation dynamique, le système résout une limitation majeure des antennes miniatures : leur sensibilité extrême aux perturbations environnementales, telles que la proximité du corps humain ou des surfaces métalliques. De plus, l’intégration du module d’impédance synthétisée apporte une polyvalence supplémentaire en permettant l’émulation de charges complexes. Cette capacité optimise non seulement le transfert d’énergie, mais ouvre également la voie à des fonctionnalités avancées, comme la caractérisation de matériaux et la détection de l’environnement autour de l’antenne.
L’un des axes centraux de cette recherche est la co-intégration d’un analyseur de réseau vectoriel (VNA) avec un réseau de post-matching large bande (PMN) et un module d’impédance synthétisée. Cette architecture combinée offre une surveillance en temps réel de l’impédance, un ajustement dynamique et la génération de profils d’impédance spécifiques, essentiels pour caractériser la réponse de l’antenne dans différents scénarios. Un fonctionnement garanti dans la bande 100 MHz–6 GHz est assuré tout en maintenant une faible consommation d’énergie grâce à une gestion efficace des cycles d’activité.

Profil recherché : vous êtes passionné(e) par l’électronique et la microélectronique, et souhaitez contribuer à une avancée technologique majeure ? Nous recherchons un(e) candidat(e) motivé(e) et curieux(se), doté(e) des qualités suivantes :
. Formation : Diplômé(e) d’une école d’ingénieurs ou titulaire d’un master en électronique ou microélectronique.
. Compétences techniques :
Solides connaissances en technologies transistors (CMOS, Bipolaire, GaN…).
Expertise en conception analogique/RF.
Expérience avec des outils de conception tels qu’ADS et/ou Cadence.
Programmation : Compétences de base en Python, MATLAB ou autres langages similaires.
Expérience complémentaire : Une première expérience en conception de circuits intégrés serait un atout précieux.
. Pourquoi postuler : vous aurez l’opportunité de travailler sur des technologies de pointe au sein d’un environnement de recherche innovant et collaboratif. Vous serez accompagné(e) par des experts renommés du domaine pour relever des défis scientifiques et techniques stimulants.

Contacts : PhD.Ghita Yaakoubi KHBIZA : ghita.yaakoubikhbiza@cea.fr, HDR.Serge Bories : serge.bories@cea.fr

Métasurfaces Electromagnétiques à Modulation Spatio-Temporelle pour Systèmes de Communication Multifonctionnels et Durables

Les systèmes sans fil de prochaine génération (XG) envisagent une densification sans précédent des réseaux et une utilisation efficace du spectre proche des ondes millimétriques (mmW). Des concepts disruptifs sont nécessaires pour minimiser le nombre de systèmes d'antennes et leur consommation d'énergie. Les surfaces intelligentes reconfigurables (RIS) peuvent fournir une formation de faisceaux à haut gain à l'aide de dispositifs simples (par exemple, des diodes p-i-n) pour contrôler les propriétés de diffusion de leurs cellules unitaires. Cependant, l'efficacité d'une RIS et les fonctions sans fil qu'elle peut réaliser simultanément sont limitées par sa linéarité et sa réciprocité inhérentes.
Les métasurfaces modulées espace-temps (STMM) ont récemment émergé comme une solution de formation de faisceaux permettant de dépasser les limites fondamentales des systèmes linéaires invariants dans le temps. En tirant parti d'une variation temporelle supplémentaire de la réponse des cellules unitaires, par rapport aux RIS, une STMM peut ajuster simultanément les spectres angulaire et fréquentiel des champs rayonnés, sans recourir à de multiples circuits actifs comme dans les systèmes actuels.
La plupart des modèles de conception des STMM sont simplifiés et considèrent des modulations 1-D dans un régime temporel quasi-statique. L'impact de la discrétisation spatiale et de la quantification de phase est souvent négligé. Les rares prototypes rapportés sont souvent de petite taille électrique, avec une période grossière (demi-longueur d'onde). La plupart des démonstrateurs fonctionnent en réflexion, à des fréquences inférieures à 17 GHz, et ne permettent qu'une résolution de phase d’un bit. Une commande indépendante des faisceaux dans le champ lointain à plusieurs fréquences a été prouvée dans un seul plan de balayage.
Cette thèse de doctorat vise à modéliser, concevoir et démontrer des antennes STMM transmissives de grande taille électrique et multifonctionnelles, avec une résolution de phase et des capacités de formation de faisceaux améliorées. Des modèles numériques efficaces permettront de calculer les champs diffusés par une STMM dans les régions de champs lointain et proche, pour des périodes spatiales et temporelles arbitraires. Des techniques holographiques et de détection compressive seront proposées pour optimiser conjointement le profil de phase de la métasurface et les formes d'onde de modulation temporelle, permettant une mise en forme harmonique des faisceaux. Une étude approfondie de l'effet de la résolution de phase, de la période STMM et de la fréquence de modulation temporelle sur les performances, la consommation d'énergie et la complexité des électroniques de contrôle sera fournie.
Un prototype STMM transmissif basé sur des diodes p-i-n et permettant une résolution de phase de 2 bits sera réalisé pour la première fois, en s'appuyant sur les travaux du labo sur les antennes à lentilles plates électroniquement reconfigurables modulées dans l'espace. Il fonctionnera dans une gamme de fréquences adaptée aux réseaux terrestres et satellitaires (17-31 GHz). Plusieurs fonctionnalités d'antennes seront caractérisées expérimentalement à l'aide du même prototype, telles que : (i) une formation de faisceaux 2D simultanée et non réciproque à différents harmoniques des signaux de modulation temporelle, dans les régions de champ lointain ou proche ; (ii) une mise en forme de motif à la fréquence fondamentale, en utilisant des séquences temporelles optimisées pour augmenter la résolution effective de phase.
Les contributions fondamentales et expérimentales de cette recherche élargiront la compréhension physique des métasurfaces modulées dans le temps et augmenteront la maturité de cette technologie pour des antennes intelligentes économes en énergie, avec des applications aux réseaux sans fil et aux systèmes intégrés de communication et de détection. Une activité intense de diffusion dans des revues scientifiques à fort impact en électronique et physique appliquée est attendue, compte tenu de la nouveauté du sujet et de l'intérêt croissant qu'il suscite dans plusieurs communautés scientifiques.

Passage à l’échelle du jumeau numérique réseau dans les réseaux de communication complexes

Les réseaux de communication connaissent aujourd’hui une croissance exponentielle à la fois en termes de déploiement d’infrastructures réseau (notamment ceux des opérateurs à travers l’évolution progressive et soutenue vers la 6G), mais aussi en termes de machines, couvrant un large éventail d’équipements allant des serveurs Cloud aux composants IoT embarqués légers (ex. System on Chip : SoC) en passant par les terminaux mobiles comme les téléphones intelligents (smartphones).

Cet écosystème est aussi riche en équipements qu’en composants logiciels allant de l’application (ex. Audio/Vidéo streaming) jusqu’aux protocoles des différentes couches de communication réseau. De plus, un tel écosystème, lorsqu’il est opérationnel, se trouvera en perpétuel changement dont la nature peut être explicitée dans ce qui suit :
- Changement dans la topologie réseau : en raison, par exemple de défaillances matérielles ou logicielles, mobilité des utilisateurs, politiques de gestion des ressources réseau de l’opérateur, etc.
- Changement dans le taux d’utilisation/consommation des ressources réseau (bande passante, mémoire, CPU, batterie, etc.) : en raison des besoins des utilisateurs et des politiques de gestion des ressources réseau de l’opérateur, etc.

Pour assurer une supervision, ou plus généralement, une gestion efficace, qu'elle soit fine ou synthétique, des réseaux de communication, divers services/plateformes de gestion de réseau, tels que SNMP, CMIP, LWM2M, CoMI, SDN, ont été proposés et documentés dans la littérature sur les réseaux et organismes de normalisation. Par ailleurs, de telles plates-formes de gestion ont été largement adoptées notamment par les opérateurs réseau et par l’industrie de manière générale. D’ailleurs, cette adoption intègre souvent des fonctionnalités avancées, notamment des boucles de contrôle automatisées (par exemple, des systèmes experts ou des systèmes basés sur l’apprentissage automatique), améliorant ainsi la capacité des plateformes à optimiser les performances des opérations de gestion du réseau.

Cependant, malgré l’exploration et l’exploitation intensives des plateformes de gestion réseau, ces plateformes ne garantissent pas toujours une (re)configuration sans risque/erreur intrinsèque, dans des cas d’usage assez communs et critiques comme l’optimisation temps-réel du réseau, l’analyse de tests en mode opérationnel (what-if analysis), la planification des mises à jour/modernisations/extensions du réseau de communication, etc. Pour de tels scénarios, un nouveau paradigme de gestion réseau s’avère nécessaire.

Pour traiter les problématiques présentées dans la section précédente, la communauté scientifique a commencé à explorer l’adoption du concept de « jumeau numérique » pour les réseaux de communication, ce qui a donné naissance au paradigme du jumeau numérique réseau (Network Digital Twin : NDT). Le NDT est un jumeau numérique du réseau réel/physique (Physical Twin Network : PTN) ou l’on peut manipuler, sans risque, une copie numérique du vrai réseau, ce qui permet notamment de visualiser/prédire l’évolution (ou le comportement, l’état) du réseau réel si telle ou telle configuration réseau devait être appliquée. Au-delà de cet aspect, le NDT et le PTN échangent des informations via une ou plusieurs interfaces de communication dans le but de maintenir une bonne synchronisation entre eux.

Cependant, mettre en place un jumeau numérique réseau (NDT) n’est pas une tache simple. En effet, la synchronisation PTN-NDT fréquente et en temps réel pose un problème de passage à l’échelle (scalability) lorsqu’il est question de réseaux complexes (ex. nombre d’entités réseau trop important, topologies très dynamiques, volume important d’informations par nœud/par lien réseau), où chaque information réseau est susceptible d’être rapportée au niveau du NDT (par exemple un très grand nombre d'entités réseau, des topologies très dynamiques, ou un grand volume d'informations par nœud/par lien réseau).

Divers travaux scientifiques ont tenté de traiter la question du jumeau numérique réseau (NDT). Dans ces travaux il est question de définir des scenarios, exigences et architecture du NDT. Cependant, la question du passage à l’échelle dans le NDT n’a pas été traitée dans la littérature.

L'objectif de cette thèse de doctorat est de traiter le problème de passage à l’échelle (« scalabilité ») des jumeaux numériques réseau en explorant de nouveaux modèles d'apprentissage automatique pour la sélection et la prédiction des informations réseau.

Surface électromagnétique programmable aux fréquences sub-THz à base de commutateurs à matériaux à changement de phase

La conception et le développement de surfaces rayonnantes pour la formation électronique de faisceau, la modulation spatio-temporelle, la détection et la conversion de fréquence est un enjeu important pour des nombreuses applications aux fréquences sub-THz (0.1-0.6 GHz). Parmi ces applications on peut mentionner l’imagerie médicale et le contrôle industriel, l’observation de la terre et de l’espace profond, ainsi que les radars et les systèmes futurs de télécommunication très large bande. Dans ce contexte, les (Meta)Surfaces Intelligentes et Reconfigurables (RIS) sont une technologie de rupture. Leur utilisation permet de contrôler et former le rayonnement aux fréquences sub-THz de manière hybride analogique / numérique. Pour démocratiser la technologie RIS, il sera crucial de réduire sa consommation d'énergie de deux ordres de grandeur. Cependant, l'état de l'art ne répond pas aux exigences d'intégration, de modularité, de bande passante large et de haute efficacité.
Sur la base de nos résultats de recherche récents, l'objectif principal de ce projet de thèse sera de démontrer des nouvelles architectures de RIS à base de silicium à 140 GHz et 300 GHz. L'amélioration des performances du RIS THz découlera d'un choix judicieux de la technologie de fabrication et de nouvelles conceptions de méta-atomes (également appelées cellule unitaire ou élément) à large bande avec des commutateurs intégrés de type PCM (materiaux à changement de phase). La possibilité de contrôler dynamiquement l'amplitude des coefficients de transmission des méta-atomes, en plus de leur phase, sera également étudiée. Un éclairage en champ proche sera introduit pour obtenir un profil ultra-compact. A notre connaissance, cela constitue une nouvelle approche pour la conception d'antennes à gain élevé dans la gamme de fréquence sub-THz.

Conception de circuit radiofréquence pour la communication zéro energie

Notre ambition pour la communication 6G est de réduire radicalement l'énergie dans l'IoT. Pour ce faire, nous souhaitons développer un circuit intégré permettant une communication à énergie zéro qui sera une preuve de concept.
L'objectif de cette thèse est de concevoir ce circuit en FD-SOI et de le faire fonctionner dans la bande des 2,4 GHz. Dans cette thèse, nous proposons d'utiliser une nouvelle technique de conception qui révolutionne actuellement la conception des radiofréquences. Nous espérons que de nombreuses innovations pourront être réalisées au cours de ce doctorat en combinant ces deux innovations.
Le candidat intégrera une grande équipe de conception et participera à des projets de collaboration au niveau européen. Dans un premier temps, il analysera les contraintes du système pour choisir la meilleure architecture et en déduire les spécifications. Ensuite, il formalisera mathématiquement les performances de la technique de rétrodiffusion afin de mettre en place une méthodologie de conception. Il travaillera ensuite à plein temps sur la conception du circuit, envoyant à la fabrication deux circuits en technologie 22 um. Il sera également impliqué dans le test du circuit ainsi que dans la préparation d'un démonstrateur des techniques de rétrodiffusion. Nous espérons publier plusieurs articles dans des conférences de haut niveau.

Radars passifs distribués

L'objectif de cette thèse consiste à détecter et localiser des drones pénétrant dans une zone urbaine à protéger grâce à l’observation des signaux émis par les stations cellulaires.
Des études ont montrées qu’il était possible de localiser un drone s’il était proche du système d’écoute et de la station cellulaire (i.e. la station de base). Quand la situation est plus complexe (i.e. il n’y a pas de trajet direct entre la station cellulaire et le radar ou en présence de plusieurs stations cellulaires émettrices causant un fort niveau d’interférence), un seul système d’écoute dit radar passif ne peut détecter et localiser correctement le drone.
Pour s’affranchir de ces conditions difficiles, nous souhaitons distribuer ou déployer sur la zone à protéger un ensemble de radars passifs à faible complexité qui exploitent de façon optimale les signaux émis par ces stations cellulaires. Une stratégie de distribution et de déploiement de radars passifs est alors à considérer en prenant en compte les positions des stations cellulaires émettrices. La possibilité d’échanger des informations entre les radars passifs doit également être envisagée afin de mieux gérer les interférences liées aux stations cellulaires.
Le candidat devra faire état d’une formation de niveau Master 2 à dominante traitement numérique du signal. De bonnes connaissances en télécoms, radar et propagation sont recommandées.

L’étudiant sera accueilli au CEA Grenoble dans une équipe d’experts en traitement du signal pour les télécommunications (http=s://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/plateforme-telecommunications.aspx)

Modélisation des Signatures Électromagnétiques dans un Scénario à Trajets Multiples pour la Reconnaissance d'Objets et le SLAM Radio Sémantique

Contexte:
La vision des futurs réseaux de communication sans fil envisage des services de positionnement et de localisation extrêmement précis dans des environnements intérieurs et extérieurs, en parallèle avec les services de communication (Joint Communication and Sensing- JCAS). Avec l'utilisation généralisée des technologies radar, le concept de Simultaneous Localization and Mapping (SLAM) a récemment été adapté aux applications en radiofréquences. Les premières démonstrations de faisabilité ont été réalisées en environnements intérieurs, produisant des cartes 2D basées sur des signaux rétrodiffusés aux ondes millimétriques (mmWave) ou en THz. Ces mesures permettent de fournir des données de détection, ouvrant la voie au développement de modèles complexes qui détaillent l'emplacement précis, la taille et l'orientation des objets cibles, ainsi que leurs propriétés électromagnétiques et leur composition matérielle.
Au-delà de la simple reproduction de cartes, l'intégration de la reconnaissance et du positionnement d'objets dans l'environnement peut ajouter une couche sémantique à ces applications. Bien que le SLAM sémantique ait été exploré avec des technologies basées sur des capteur vidéo, son application aux radiofréquences reste un domaine de recherche émergent nécessitant des modèles électromagnétiques précis des signatures des objets et de leurs interactions avec l'environnement. Des études récentes ont développé des modèles basés sur l'optique physique itérative et des courants équivalents pour simuler la signature multistatique en espace libre d'objets proches.

Thèse de doctorat:
L'objectif de cette thèse est d'étudier et de modéliser la rétrodiffusion des objets dans un scénario à trajets multiples, afin d'obtenir une imagerie précise et une reconnaissance des objets (y compris leurs propriétés matérielles). Le travail consistera à développer un modèle mathématique pour la rétrodiffusion des objets détectés dans l'environnement, à l'appliquer au SLAM 3D et à atteindre des objectifs de reconnaissance et de classification des objets. Ce modèle devra intégrer les effets en champ proche et en champ lointain tout en prenant en compte l'impact de l'antenne sur le canal radio global.
L'étude soutiendra la conception conjointe des systèmes d'antennes et des techniques de traitement associées (filtrage et imagerie) nécessaires à l'application.
Le doctorant fera partie du Laboratoire Antennes, Propagation et Couplage Inductif du CEA-LETI, à Grenoble (France). Il bénéficiera d'installations de pointe (sondeurs de voies, émulateur, logiciel OTA et simulateur électromagnétique).
La thèse se déroulera en partenariat avec l'Université de Bologne.

Application:
Le poste est ouvert aux étudiant.e.s exceptionnels titulaires d’un Master of Science, d’une école d’ingénieur ou équivalent. Le/la étudiant.e doit avoir une spécialisation dans le domaine des télécommunications, des micro-ondes et/ou du traitement du signal. Le dossier de candidature doit obligatoirement comprendre un CV, une lettre de motivation et les notes des deux dernières années d'études.

Conception innovante de circuit radiofréquence basée sur une approche de co-optimisation technology-système

Ce sujet de thèse adresse les deux grands défis de l’Europe d’aujourd’hui pour l’intégration des systèmes de communication du futur. Il s’agit de concevoir des circuits intégrés RF en technologie 22nm FDSOI dans les bandes de fréquences dédiées à la 6G permettant non seulement d’augmenter les débits mais aussi de réduire l’empreinte carbone des réseaux de télécommunications. En parallèle, il est primordial de réfléchir à l’évolution des technologies silicium qui permettraient d’améliorer l’efficacité énergétique et l’efficacité de ces circuits. Ce travail sera mené en apportant une réflexion sur la méthodologie de conception des systèmes radiofréquences.
Dans le cadre de la thèse, l'objectif sera décomposé en trois phases. Il faudra d’abord se doter d’outils de simulation, préfigurant les performances de la future technologie FDSOI 10nm du Leti. Une deuxième étape consistera à identifier les architectures les plus pertinentes existant dans la littérature pour les domaines applicatifs envisagés pour la technologie. Un lien avec les projets amonts en télécommunications sera systématiquement établi pour que le candidat saisisse les enjeux des systèmes.
Enfin, afin de valider les concepts développés, la conception d’un LNA et d’un VCO dans le cadre d’un projet en cours dans le laboratoire sera proposée.

Le candidat s’intégrera dans une équipe conséquente qui travaille sur les nouveaux systèmes de communication et qui aborde à la fois les aspects d’étude architecturale, de modélisation et de conception de circuits intégrés. Le candidat devra disposer de compétences sérieuses en conception de circuits intégrés et en systèmes radiofréquence ainsi qu’une bonne aptitude à travailler en équipe.

Top