Vers une usine cellulaire produisant des biohydrocarbures : biologie et biotechnologie d'un modèle émergent de microalgue streptophyte
Dans l'histoire évolutive du vivant, l'adaptation progressive de certaines microalgues aquatiques à un mode de vie aéroterrestre a été une période capitale car elle a permis de donner naissance à toutes les plantes terrestres actuelles. Le séquençage récent de génomes d’algues streptophytes, un groupe jusqu’à présent peu étudié, a commencé à lever le voile sur ce processus évolutif. L’apparition chez une algue streptophyte ancestrale de la capacité à synthétiser et excréter des composés hydrophobes comme les hydrocarbures, capables de former une couche protectrice imperméable à l’eau à la surface des cellules, a nécessairement été une étape importante dans la survie et l’adaptation en milieu aérien. Aujourd’hui, l’incapacité des algues industrielles à excréter des hydrocarbures est par ailleurs un verrou biotechnologique important en vue d’une production dans un organisme photosynthétique d’hydrocarbures biosourcés pour la chimie verte ou les carburants. L’objectif de ce projet de thèse est donc double : d’abord, dans un but de connaissance fondamentale, de caractériser les voies de synthèse et d’excrétion de composés hydrophobes dans une algue qui est un modèle émergent d’algue streptophyte (et est jusqu’à présent la seule où l’on peut identifier un équipement enzymatique de synthèse d’hydrocarbures similaire à celui des plantes); ensuite, dans un but appliqué, de déterminer par des approches d’ingénierie génétique un set de protéines qui permet de maximiser la synthèse et l’excrétion des hydrocarbures dans cette algue modèle.
Élucider le mécanisme de la fixation enzymatique du carbone
Le groupe Synchrotron de l'Institut de Biologie Structurale de Grenoble développe actuellement une méthode innovante appelée TR-FOX (Time-Resolved Functional Oscillation Crystallography). Cette technique vise à élucider, d’une part, la dynamique globale des macromolécules biologiques en fonctionnement, et d’autre part, les détails de leur mécanisme catalytique. Elle repose sur l’utilisation d’un injecteur capable de déposer sur l’échantillon cristallin, durant l'enregistrement des données de diffraction, une gouttelette de quelques nanolitres contenant les substrat et cofacteur de la réaction étudiée. Cela déclenche ainsi une réaction enzymatique au sein du cristal. Cette approche peut être couplée à la spectroscopie d'absorption UV-Visible pour caractériser plus précisément la cinétique de la réaction. L'objectif est d'obtenir une série de structures représentant différents états du cycle catalytique, permettant ainsi la réalisation d’un film moléculaire du fonctionnement de l’enzyme. Cette thèse poursuit un double objectif : (i) Améliorer et valider la méthode TR-FOX, (ii) Élucider le mécanisme catalytique de deux enzymes impliquées dans la fixation du carbone soit par capture soit par conversion du CO2.
Vers une meilleure compréhension des protéines membranaires grâce à l’IA
Malgré les avancées spectaculaires de l'intelligence artificielle (IA), notamment avec des outils tels qu’AlphaFold, la prédiction des structures des protéines membranaires demeure un défi majeur en biologie structurale. Ces protéines, qui représentent 30% du protéome et 60% des cibles thérapeutiques, sont encore largement sous-représentées dans la Protein Data Bank (PDB), avec seulement 3% de structures résolues. Cette rareté s’explique par la difficulté à maintenir leur état natif dans un environnement amphiphile, ce qui complique leur étude, notamment avec les techniques structurales classiques.
Ce projet de thèse a pour objectif de lever ces obstacles en combinant les capacités prédictives d'AlphaFold avec des données expérimentales de diffusion aux petits angles (SAXS/SANS), obtenues en condition physiologique. L’étude se concentrera sur la protéine translocatrice TSPO, un marqueur clé en neuro-imagerie de plusieurs pathologies graves (cancers, maladies neurodégénératives) en raison de sa forte affinité pour divers ligands pharmacologiques.
Ce travail s’articulera autour de la prédiction de la structure de TSPO en présence et en absence de ligands, de l’acquisition de données SAXS/SANS du complexe TSPO/amphiphiles et de l’affinement des modèles grâce à des outils de modélisation avancée (MolPlay, Chai-1) et des simulations de dynamique moléculaire. En approfondissant la compréhension de la structure et de la fonction de TSPO, ce projet pourrait conduire à la conception de nouveaux ligands pour le diagnostic et la thérapie.
Effet de la combinaison des radiations ionisantes et de molécules radio-sensibilisantes dans des modèles de cancer du sein
Le programme proposé vise à évaluer l'efficacité de molécules améliorant les effets de la radiothérapie, dans des modèles in vitro et in vivo de cancer du sein. Deux types de molécules, à savoir un inhibiteur de la maintenance du génome mitochondrial et un inhibiteur de la voie du Base Excision Repair feront l'objet d'un test d'efficacité de radiopotentialisation dans les modèles.
Les inhibiteurs pressentis, qu’ils ciblent la maintenance du génome mitochondrial ou la voie du BER, font déjà l’objet de recherches in vitro, au sein du laboratoire et chez des collaborateurs. Nous avons montré que l’inhibition des mécanismes étudiés permet une diminution de la réparation des cassures de l’ADN suivant un stress génotoxique. Durant ce projet, nous évaluerons les effets des inhibiteurs sur les réparations des dommages à l’ADN induits par les irradiations de différents types (conventionnelle, ultra haut débit de dose, voire débit de dose extrême), ainsi que les mécanismes associés.
Une variabilité de réponse aux combinaisons thérapeutiques est très fréquemment observée lors du passage des modèles in vitro aux modèles in vivo. Ainsi nous évaluerons les inhibiteurs d’une part sur des modèles de lignées cellulaires bien caractérisés au laboratoire, et correspondant à différents sous-types de cancer du sein. D’autre part, les études seront complétées par une validation des effets relevés in vitro sur un modèle murin de cancer du sein. Ce modèle de xénogreffes, développé dans des animaux immunocompétents, permet un suivi clinique, histologique, et immunitaire des animaux et de leurs tumeurs afin de confirmer l'intérêt des molécules pour une application thérapeutique en appui à la radiothérapie.
Ce programme bénéficiera des collaborations du laboratoire avec des physiciens et des chimistes, et des installations expérimentales et plateformes de l'IRCM (irradiation, expérimentation animale, microscopie, cytométrie, etc...)
Dimensionnement du cytosquelette en relation avec la taille et la fonction des cellules
Chaque type cellulaire, défini notamment par sa fonction, se caractérise par une gamme de taille qui lui est spécifique. En effet, la taille des cellules au sein d'un type cellulaire donné présente une distribution étroite qui peut varier de plusieurs ordres de grandeur entre les cellules les plus petites, telles que les globules rouges, et les plus grandes comme les cellules musculaires. Cette caractéristique de taille est essentiellement maintenue au cours de la vie d'un individu et demeure très conservée chez les mammifères. L’ensemble de ces caractéristiques suggère donc que le maintien d'une « taille appropriée » pour une cellule donnée pourrait jouer un rôle important dans l'accomplissement de ses fonctions.
Le cytosquelette d'actine, qui comprend différentes architectures intracellulaires stables et dynamiques, joue un rôle majeur dans la plasticité structurale des cellules en réponse à des changements de forme ou de taille. Nos travaux récents suggèrent que les réseaux d'actine développés à l'intérieur d'une cellule s'adaptent à la taille et au volume de la cellule lorsque ces derniers varient. Cependant, la compréhension du mécanisme par lequel les cellules adaptent le taux de renouvellement et l'organisation de leurs nombreuses structures en compétition pour un même pool de monomères d’actine demeure incomplète.
Dans ce projet, nous proposons donc d'étudier l'organisation et la dynamique des réseaux d'actine au sein de types de cellules présentant des différences de taille et de fonction fondamentales. En particulier, notre étude se concentrera sur la caractérisation de l'impact de l'organisation/dynamique de ces réseaux sur différentes fonctions cellulaires telles que la migration cellulaire ou la polarisation. La rétroaction entre la dynamique de l'architecture du cytosquelette, la taille et la fonction de la cellule sera également abordée en imposant des perturbations dans l’organisation du cytosquelette.
Développement d’un système dosimétrique pour le suivi des traces alpha dans les essais in vitro de la radiothérapie interne vectorisée alpha
La thérapie alpha ciblée (TAC) est une nouvelle méthode prometteuse pour traiter le cancer. Elle utilise des substances radioactives appelées radioisotopes émetteurs alpha, qui sont injectées dans le corps du patient. Ces substances se dirigent spécifiquement vers les cellules cancéreuses, ce qui permet de concentrer la radiation là où elle est le plus nécessaire, c'est-à-dire près des tumeurs. Les particules alpha sont particulièrement efficaces car elles ont une courte portée et peuvent détruire les cellules cancéreuses de manière très ciblée.
Comme pour tout nouveau traitement, la TAC doit passer par des études précliniques pour vérifier son efficacité et la comparer à d'autres traitements existants. Une partie importante de ces recherches se fait en laboratoire, où des cellules cancéreuses sont exposées à ces substances radioactives pour observer leurs effets, comme le taux de survie des cellules. Cependant, évaluer l'impact des particules alpha nécessite des méthodes spécifiques, car leur comportement es
Dynamique des protéines associées aux filaments nucléoprotéiques Rad51 - Implication dans la régulation de la recombinaison homologue
La recombinaison homologue (RH) est un mécanisme majeur de réparation des cassures double-brin de l'ADN induites par les radiations ionisantes. Une étape clé de la RH est la formation de filaments nucléoprotéique Rad51 sur l'ADN simple brin généré par ces cassures. Nous avons été les premiers a montré chez la levure qu'un contrôle strict de ces filaments est essentiel afin que la RH n'induise pas elle-même de réarrangements chromosomiques (eLife 2018, Cells 2021). Chez l'homme, les homologues fonctionnels des protéines de contrôle sont des suppresseurs de tumeurs. Ainsi, le contrôle de la RH semble être aussi important que le mécanisme de la RH lui-même. Notre projet implique l'utilisation de nouveaux outils moléculaires permettant une percée dans l'étude de ces contrôles. Nous utiliserons une version fonctionnelle fluorescente de la protéine Rad51 développée pour la première fois par nos collaborateurs A. Taddei (Institut Curie), R. Guérois et F. Ochsenbein (I2BC, Joliot, CEA). Cette avancée majeure nous permettra d'observer l'influence des protéines de contrôle sur la réparation de l'ADN par microscopie dans des cellules vivantes. Nous avons également développé des modèles structuraux très précis des complexes de protéines de contrôle en association avec les filaments Rad51. Nous recourrons à une approche multidisciplinaire basée sur la génétique, la biologie moléculaire, la microscopie, la biochimie et la structure des protéines en collaboration avec le laboratoire de W.D. Heyer (University of California, Davis, USA), pour comprendre la fonction des régulateurs de la formation des filaments Rad51. La description de l’organisation de ces protéines avec les filaments Rad51 nous permettra de développer de nouvelles approches thérapeutiques.
MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN
La méthylation de l'ADN chez les bactéries a été traditionnellement étudiée dans le contexte de la défense antiparasitaire. Cependant, les progrès du séquençage qui permettent l'analyse de la méthylation de l'ADN à l'échelle génomique se développent actuellement et ont propulsé une révolution épigénomique dans notre compréhension de l'étendue et de la pertinence physiologique de la méthylation. Généralement, la première étape de l'étude des impacts fonctionnels de la méthylation de l'ADN bactérien consiste à comparer l'expression globale des gènes entre des souches de type sauvage (WT) et des souches mutantes de méthyltransférase (MTase). Plusieurs études utilisant l'ARN-seq pour de telles comparaisons ont montré que la perturbation d'une seule MTase d'ADN entraîne souvent des dizaines, des centaines et parfois des milliers de gènes différentiellement exprimés (DE). Selon le modèle de compétition locale, la liaison compétitive entre une MTase et d'autres protéines liant l'ADN (par exemple, des facteurs de transcription) sur des sites de motifs spécifiques, affecte la transcription d'un gène voisin, entraînant une variation phénotypique au sein de la population bactérienne. Toutefois, si dans certains cas les effets régulateurs des MTases peuvent être attribués de manière concluante à la méthylation au niveau des promoteurs des gènes cibles, la grande majorité (>90%) des gènes DE n'ont pas de sites méthylés dans leurs régions promotrices, ce qui implique que les MTases ne sont pas des agents de régulation de la transcription, et que le modèle de compétition locale ne s'applique pas à la plupart des gènes DE. Une autre possibilité est que l'état de méthylation des motifs individuels régule l'expression d'un facteur de transcription, provoquant un large changement en aval dans l'expression de ses gènes cibles. Cependant, cette dernière hypothèse n'est pas suffisamment explicative pour un si grand nombre de gènes DE. Une hypothèse alternative concerne l'effet de la méthylation de l'ADN sur la topologie des chromosomes, en induisant des changements structurels qui modifient le répertoire des gènes exposés à la machinerie transcriptionnelle cellulaire. Nous avons récemment identifié CamA, une MTase core de Clostridioides difficile méthylant CAAAAA, qui joue un rôle dans la formation du biofilm, la sporulation et la transmission in vivo. De plus, dans une analyse ultérieure à grande échelle, nous avons découvert que CamA n'était que la partie émergée de l'iceberg, avec 45 % des espèces bactériennes de Genbank contenant au moins une MTase core ou quasi core, ce qui montre que ces dernières sont abondantes et suggère que leurs modifications épigénétiques sont également importantes pour les bactéries. En outre, des analogues de la S-adénosyl-l-méthionine (SAM) ont réussi à inhiber CamA, ce qui représente une première étape importante dans la création de thérapeutiques puissantes et sélectives ciblées sur l'épigénétique qui peuvent être exploitées comme nouveaux antimicrobiens.
Dans cette proposition de projet de doctorat, le candidat retenu est invité à déchiffrer l'interaction entre la méthylation bactérienne, l'organisation spatiale du génome et l'expression des gènes en répondant aux questions suivantes : i) la méthylation modifie-t-elle les domaines d'interaction chromosomique ? ii) les gènes DE et/ou les motifs de méthylation cibles sont-ils enrichis dans les limites des domaines d'interaction chromosomique modifiables ? iii) pouvons-nous modifier le méthylome (globalement ou localement) pour réprimer certains agents pathogènes humains ? Il / elle utilisera les technologies de séquençage Hi-C et long-read combinées à la génétique microbienne et à la génomique comparative pour faire progresser notre compréhension dans le domaine de l'épigénomique microbienne.
Etude des liens entre dérégulations du métabolisme et des marques épigénétiques dans la maladie de Huntington
Notre objectif est d’étudier les dérégulations épigénétiques dans la maladie de Huntington (HD). A l’aide de modèles souris, nous appréhenderons les liens entre altérations du métabolisme énergétique et défauts épigénétiques dans les neurones striataux, afin de mieux comprendre le mécanisme de vulnérabilité striatale dans la HD et de définir un nouveau cadre pour le développement de thérapies. Nous voulons obtenir des cartes détaillées des modifications post-traductionnelles (PTMs) des histones, en particulier des méthylations, de l'acétylation et de la lactylation récemment décrite. En effet, ces PTMs sont étroitement régulées par l'état métabolique des cellules. Nous utiliserons la protéomique qui est l'approche la mieux adaptée pour identifier et quantifier les multiples PTMs des protéines. Nous envisageons de travailler sur le striatum de souris WT, transgéniques R6/1 et du modèle plus progressif Q140 knock-in à différents stades de la maladie, afin de suivre l'évolution des PTMs d'histones et du métabolisme lors du vieillissement. En outre, pour obtenir une vision dynamique des liens entre les déséquilibres métaboliques et épigénétiques dans la maladie, nous injecterons du 13C-glucose par voie intrapéritonéale à des souris HD et contrôles, et nous analyserons l'incorporation du 13C dans les PTMs d'histones en fonction du temps. Enfin, il a été démontré que l'acétyl-CoA, le précurseur de l'acétylation des lysines des histones, est produit localement dans le noyau, par l'acétyl-CoA synthétase 2 (ACSS2), l'ATP-citrate lyase (ACLY) ou le complexe pyruvate déshydrogénase. Où et par quelles enzymes le lactate est produit reste une question ouverte. L'ACSS2 est un très bon candidat, car elle peut catalyser la production de molécules d'acyl-CoA à partir des acides gras correspondants. Pour appréhender la possible production de métabolites à proximité de la chromatine dans les cellules striatales, nous obtiendrons les distributions génomiques d'ACSS2 et d'ACLY par ChIPseq/CUT&tag et les comparerons aux distributions de marques d'histones acétylées et lactylées.
RMN du Xénon hyperpolarisé pour sonder la fonctionnalité de barrières biologiques
Le pompage optique du xénon, permettant d’obtenir rapidement un signal RMN intense, est une spécialité de l’équipe LSDRM. Le xénon, soluble dans les milieux biologiques, présente une grande gamme de déplacements chimiques, ce nous utilisons ici pour étudier les propriétés de barrières cellulaires. De nombreuses pathologies découlent d'une altération de celles-ci.
Dans ce sujet de thèse nous souhaitons développer une méthodologie spécifique au xénon hyperpolarisé pour étudier la fonctionnalité (intégrité, perméabilité, sélectivité) de barrières biologiques, en spectroscopie et en imagerie in vitro et in vivo. La thèse se déroulera en deux parties : in vitro il s’agira de développer un dispositif et les protocoles RMN permettant d’étudier des assemblages cellulaires modèles; in vivo des études sur rongeurs permettront d’évaluer l’aptitude du xénon à atteindre des organes plus ou moins proches des poumons en gardant sa polarisation, et de mesurer des cinétiques de passage. Ce sujet permettra des avancées instrumentales et méthodologiques majeures, ainsi qu’un approfondissement des connaissances sur les processus de transports sélectifs au niveau de différentes barrières biologiques.