Etude des liens entre dérégulations du métabolisme et des marques épigénétiques dans la maladie de Huntington

Notre objectif est d’étudier les dérégulations épigénétiques dans la maladie de Huntington (HD). A l’aide de modèles souris, nous appréhenderons les liens entre altérations du métabolisme énergétique et défauts épigénétiques dans les neurones striataux, afin de mieux comprendre le mécanisme de vulnérabilité striatale dans la HD et de définir un nouveau cadre pour le développement de thérapies. Nous voulons obtenir des cartes détaillées des modifications post-traductionnelles (PTMs) des histones, en particulier des méthylations, de l'acétylation et de la lactylation récemment décrite. En effet, ces PTMs sont étroitement régulées par l'état métabolique des cellules. Nous utiliserons la protéomique qui est l'approche la mieux adaptée pour identifier et quantifier les multiples PTMs des protéines. Nous envisageons de travailler sur le striatum de souris WT, transgéniques R6/1 et du modèle plus progressif Q140 knock-in à différents stades de la maladie, afin de suivre l'évolution des PTMs d'histones et du métabolisme lors du vieillissement. En outre, pour obtenir une vision dynamique des liens entre les déséquilibres métaboliques et épigénétiques dans la maladie, nous injecterons du 13C-glucose par voie intrapéritonéale à des souris HD et contrôles, et nous analyserons l'incorporation du 13C dans les PTMs d'histones en fonction du temps. Enfin, il a été démontré que l'acétyl-CoA, le précurseur de l'acétylation des lysines des histones, est produit localement dans le noyau, par l'acétyl-CoA synthétase 2 (ACSS2), l'ATP-citrate lyase (ACLY) ou le complexe pyruvate déshydrogénase. Où et par quelles enzymes le lactate est produit reste une question ouverte. L'ACSS2 est un très bon candidat, car elle peut catalyser la production de molécules d'acyl-CoA à partir des acides gras correspondants. Pour appréhender la possible production de métabolites à proximité de la chromatine dans les cellules striatales, nous obtiendrons les distributions génomiques d'ACSS2 et d'ACLY par ChIPseq/CUT&tag et les comparerons aux distributions de marques d'histones acétylées et lactylées.

RMN du Xénon hyperpolarisé pour sonder la fonctionnalité de barrières biologiques

Le pompage optique du xénon, permettant d’obtenir rapidement un signal RMN intense, est une spécialité de l’équipe LSDRM. Le xénon, soluble dans les milieux biologiques, présente une grande gamme de déplacements chimiques, ce nous utilisons ici pour étudier les propriétés de barrières cellulaires. De nombreuses pathologies découlent d'une altération de celles-ci.

Dans ce sujet de thèse nous souhaitons développer une méthodologie spécifique au xénon hyperpolarisé pour étudier la fonctionnalité (intégrité, perméabilité, sélectivité) de barrières biologiques, en spectroscopie et en imagerie in vitro et in vivo. La thèse se déroulera en deux parties : in vitro il s’agira de développer un dispositif et les protocoles RMN permettant d’étudier des assemblages cellulaires modèles; in vivo des études sur rongeurs permettront d’évaluer l’aptitude du xénon à atteindre des organes plus ou moins proches des poumons en gardant sa polarisation, et de mesurer des cinétiques de passage. Ce sujet permettra des avancées instrumentales et méthodologiques majeures, ainsi qu’un approfondissement des connaissances sur les processus de transports sélectifs au niveau de différentes barrières biologiques.

Condensats et Chromatine : Comment la Séparation de Phase Façonne les Réponses des Plantes à la Température

Les plantes doivent adapter leur développement aux conditions environnementales, notamment à l'augmentation des températures due au changement climatique. Le stress thermique impacte significativement la physiologie des plantes, et pour atténuer ces effets, elles ont développé des réponses au choc thermique (HSR), avec le facteur de choc thermique A1a (HSFA1a) jouant le rôle de régulateur principal chez Arabidopsis thaliana. En l'absence de stress, HSFA1a reste cytosolique et inactif, lié aux protéines de choc thermique (HSPs). Le stress thermique provoque la dissociation des HSPs, permettant la translocation nucléaire, la trimérisation, la liaison à la chromatine et l'activation des gènes de réponse au stress. Des études récentes révèlent qu'HSFA1a pourrait agir comme un facteur de transcription pionnier pour accéder à des régions chromatiniennes fermées et initier la HSR. De plus, des résultats préliminaires suggèrent qu'HSFA1a subit une séparation de phase liquide-liquide (LLPS) pour former des condensats nucléaires régulant l'expression des gènes. Ce projet vise à 1) explorer l'effet de la température sur la structure et l'oligomérisation de HSFA1a, 2) étudier la LLPS de HSFA1a en présence et en absence d'ADN, 3) caractériser l'activité pionnière de HSFA1a, et 4) déterminer l'importance physiologique de la LLPS dans la HSR.

Caractérisation du mécanisme moléculaire de détection des terres rares chez Pseudomonas putida et développement de biosenseurs associés.

Les terres rares (TR) sont des métaux largement utilisés dans les hautes technologies et la demande en TR devrait doubler d’ici 30 ans. L’extraction sélective et le recyclage des TR ont un triple enjeu, économique, technologique et écologique. Actuellement, moins de 1% des TR sont recyclées. De plus, les méthodes d’extraction sont fastidieuses et polluantes. Elles nécessitent plusieurs étapes avec acides ou solvants. La découverte en 2011 d’enzymes utilisant naturellement les TR légères a ouvert de nouvelles perspectives. Le développement de méthodes biosourcées pourrait être un élément clé pour débloquer les verrous de sélectivité et d’extraction actuels. Cette thèse s’inscrit dans la thématique biotechnologies de demain. Le but de cette thèse, est d’acquérir des données fondamentales sur le mécanisme moléculaire d’un système biologique de perception sélective des TR afin d’en tirer profit pour le développement d’un crible basé sur des biosenseurs répondant spécifiquement à certaines d’entre elles. Des techniques de biologie cellulaire, biochimie et d’analyse in silico avec des outils d’intelligence artificielle seront utilisées pour accomplir ce projet. Les résultats obtenus permettront d’identifier : 1) le mécanisme moléculaire de détection des TR et les facteurs influençant sa sélectivité, 2) les sites de liaison du régulateur et les gènes impliqués dans cette réponse, et 3) le développement à partir de 1) and 2) de biosenseurs robustes et sélectifs.

Nouvel outil de diagnostic rapide pour la septicémie : biopuce microfluidique pour la détection multicible par amplification isotherme

Le sepsis est l’une des principales causes de mortalité dans le monde qui résulte généralement d’une infection bactérienne mais peut être aussi causé par des virus, des champignons ou des parasites. Un diagnostic rapide est essentiel pour une prise en charge efficace et augmenter les chances de survie du patient. Il existe des solutions commerciales de détection d’acides nucléiques par qPCR capable de détecter plusieurs cibles. Cependant ces techniques sont limitées par le nombre de canaux de fluorescence disponible sur l’instrument ou par le nombre de chambre de lecture. Ces techniques d’amorces LAMP (amplification isotherme en temps réel) spécifiques sur un support solide tel que le COC ou le verre.
Les résultats attendus sont l’élaboration d’une biopuce permettant de détecter en temps réel et en quelques minutes fragmentent l’échantillon pour pouvoir être multiplexe, ce qui conduit à une perte de sensibilité.
Pour répondre à la question : comment détecter plusieurs cibles sans perdre en sensibilité ? Le doctorant devra réaliser dans une unique chambre réactionnelle, une détection multiplexe par régionalisation plusieurs ADN cibles, comprenant : le design et le choix des amorces, l’immobilisation des amorces par fonctionnalisation de surface, l’intégration en carte micro fluidique et le traitement des données pour la détection par fluorescence de sondes spécifiques des cibles.
Cette innovation technologique, permettra au doctorant d’acquérir de solides compétences dans divers domaines tels que la biologie moléculaire, la fonctionnalisation de surface, la modélisation et la simulation tout en s’inscrivant dans une équipe pluridisciplinaire.

Dialogue entre les adipocytes et les lymphocytes T, acteurs clés de l’immunité dans le tissu adipeux

Le rôle métabolique et endocrine du tissu adipeux (TA) est établi. Le TA est composé majoritairement d’adipocytes mais aussi de cellules immunitaires, surtout connues pour contrôler l’homéostasie métabolique du tissu. L’activité immunitaire du TA est associée à la sécrétion de cytokines et de métabolites qui modulent la fonction immune. L’obésité, caractérisée par une accumulation de TA au niveau sous-cutané ou viscéral, est associée à une inflammation locale du TA. Pourtant, le TA peut être infecté par différents pathogènes et il constitue un site d’accumulation de lymphocytes T (LT) CD8 spécifiques de ceux-ci, qui protègent contre une réinfection. Ces données incitent donc à préciser lors d’une infection les interactions entre adipocytes et LT-CD8 du TA.
Le projet sera réalisé dans l’équipe CoVir qui développe divers projets visant à décrypter les propriétés anti-infectieuses du tissu adipeux. Il s’inscrit dans le cadre d’un consortium établi pour un projet ANR (INSERM, CNRS, Institut Pasteur de Lille). L’objectif du projet de l’équipe est d’étudier la contribution locale des adipocytes et des LT-CD8 résidants dans le TA au cours de l’infection par le virus de la grippe dans un modèle de primate non-humain (PNH). Le PNH présente des réponses métaboliques et immunitaire proches de l’homme. En complément des approches in-vivo chez le PNH, nous allons développer un modèle 3D de co-culture pour cibler l’interaction entre adipocytes et LT-CD8, sans interférence des signaux inflammatoires, métaboliques extérieurs au TA. Ce projet bénéficie de l’expertise historique développée dans l’institut (IMVA-HB UMR 1184/I IDMIT, dirigée par R. Le Grand) concernant l’étude des infections virales dans le modèle préclinique de PNH. Les plateformes de l’IDMIT mettent à disposition des équipements et une expertise en histologie, en cytométrie (LFC), de détection des cytokines/chimiokines (L2I) et pour le bien-être animal (ASW).
Le projet de thèse se concentrera sur les approches in vitro. Nous comparerons les interactions entre adipocytes et les LT, en étudiant la réponse métabolique et immunitaire de chacune de ces fractions. En effet, les cellules adipocytaires présentent une activité métabolique forte mais exercent une activité immunitaire propre (par la production de peptides microbicides) et une activité immuno-modulatrice. Concernant les cellules immunitaires, leur activité fonctionnelle est dépendante de leurs fonctions métaboliques et il est crucial d’évaluer les modifications immuno-métaboliques des cellules immunitaires en présence d’’adipocytes. Le modèle organoïde nous permettra d’évaluer : (i) l’impact du contexte d’obésité à celles dans un contexte de normalité métabolique, (ii) l’impact de pathogènes viraux sur chacune de ces deux fractions. A moyen terme, ce modèle permettra de tester des stratégies de modulation des fonctions du TA au cours des pathologies métaboliques ou des infections virales.

Vers une compréhension fine de la régulation de l’expression des gènes par l’acétylation et la lactylation des protéines histones

Dans les cellules eucaryotes, l’ADN s’enroule autour de protéines histones pour former la chromatine. La modification dynamique des histones par diverses structures chimiques permet de réguler finement l’expression des gènes. Des altérations dans ces mécanismes complexes de régulation sont à l’origine de nombreuses maladies. L’acétylation des lysines d’histones est connue pour induire l’expression des gènes. D’autres structures peuvent être ajoutées sur les histones, dont les effets sur la transcription restent largement à élucider. La plupart d’entre elles, comme la lactylation découverte en 2019, dépendent du métabolisme cellulaire. Nous avons commencé l’étude de la lactylation dans la spermatogenèse murine. Ce processus de différentiation cellulaire constitue en effet un modèle de choix pour étudier la régulation de la transcription, du fait de changements spectaculaires dans la composition de la chromatine et dans le programme d’expression génique. Nous avons généré de nouveaux profils épigénétiques consistant en la distribution sur le génome de marques acétylées et lactylées sur trois lysines de l’histone H3. L’objet de cette thèse est de contribuer au déchiffrage du « code histone », d’abord en étudiant le rôle des lactylations sur le programme transcriptionnel. Ensuite, la prédiction d'états chromatiniens sera raffinée en intégrant au sein de modèles de réseaux de neurones nos nouvelles données à l'ensemble des données épigénomiques existant aux deux stades cellulaires étudiés.

ROLE DE L'UNFOLDED PROTEIN RESPONSE DANS LE MAINTIEN DU STOCK DE CELLULES SOUCHES SPERMATOGONIALES CHEZ LA SOURIS ADULTE

Des conditions défavorables (stress oxydatif, déséquilibre des taux de lipides, de glucose ou de calcium, ou inflammation) provoquent l'accumulation de protéines anormales, induisant un stress du RE. L'Unfolded Protein Response (UPR) est activée pour restaurer l'homéostasie cellulaire, mais un stress sévère ou chronique entraîne la mort cellulaire par apoptose. Une dérégulation des voies de signalisation UPR favorise plusieurs maladies humaines (diabète, maladie de Parkinson, maladie d'Alzheimer, maladies du foie, cancer...), mais on ne sait rien de son rôle dans la stérilité de l'homme adulte.
La production de spermatozoïdes repose sur les cellules souches spermatogoniales (CSS) dont le stock est maintenu par autorenouvellement tout au long de la vie. Nous avons montré que l'activité clonogénique des CSS murines en culture est drastiquement réduite par induction de la différenciation cellulaire après induction d'un stress du RE. Un criblage HTS a identifié 2 des 3 branches UPR comme étant impliquées dans l'activité clonogénique des CSS de souris. Le rôle de ces 2 voies UPR sera étudié plus en détail afin de préciser si elles sont impliquées dans l'induction de mort cellulaire ou dans l'équilibre autorenouvellement/ différenciation. Dans les cultures de CSS de souris traitées, la mort cellulaire, le cycle cellulaire, l'induction de la différenciation et la synergie entre voies UPR seront analysés. L'effet de chaque voie étant médié par des facteurs transcriptionnels, les gènes cibles seront caractérisés par RNAseq afin d'identifier les réseaux géniques controlés par l'UPR impliqués dans le devenir des CSS. Pour la voie la plus pertinente, une étude in vivo permettra de confirmer le rôle du facteur UPR dans la fonction et le maintien des CSS.

Modèle d’organoïdes cérébraux complexes reproduisant la niche tumorale du glioblastome et sa composante immunitaire pour le développement d’une médecine personnalisée

Le glioblastome, responsable de 3 500 décès annuels en France, est une tumeur cérébrale extrêmement agressive et résistante aux traitements actuels. Les essais cliniques d’immunothérapie n’ont montré que des effets transitoires, soulignant l'importance de comprendre les mécanismes de résistance et de développer des stratégies thérapeutiques mieux ciblées.
Nous avons développé un modèle innovant d’invasion de cellules souches de gliome dans des organoïdes cérébraux immunocompétents et vascularisés, dérivés de cellules souches pluripotentes induites (iPSC) (Raguin et coll. Soumis). Ce modèle reproduit fidèlement la niche tumorale du glioblastome, incluant la cooptation vasculaire, la reprogrammation de la microglie en macrophages associés aux tumeurs et la récurrence tumorale après radiothérapie.
L’objectif de ce projet de thèse est de dériver un modèle d’organoïdes cérébraux universel pour le transfert aux cellules de gliomes issues de patients et des lymphocytes afin d’optimiser l’approche d’immunothérapie (cellules CAR-T).
Il s’agira de créer un modèle universel d’organoïdes cérébraux humains immunitairement "silencieux" en supprimant l’expression du système HLA classes I/II dans les iPSC (CRISPR/CAS9 pour les gènes ß2M et CIITA). Par ailleurs, il s’agira d’élucider les mécanismes d’immunosuppression induits par l’irradiation, tels que la reprogrammation des cellules microgliales/macrophages et l’implication de la sénescence. Différentes approches visant à rendre le microenvironnement tumoral plus propice à l’immunothérapie seront explorées, comme en activant la voie de l'interféron de type I par modification génétique ou via des agonistes de la voie cGAS/STING. Par la suite, l'utilisation de cellules CAR-T ciblant un antigène surexprimé par les cellules de glioblastome (CD276/B7-H3) sera étudiée. Ce modèle pourra être utilisé en médecine personnalisée, en co-cultivant les cellules tumorales, les monocytes et les cellules CAR-T des patients.
Ce projet offre des perspectives innovantes pour le traitement personnalisé du glioblastome via l'immunothérapie et pourrait représenter une avancée majeure dans cette approche thérapeutique.

Valorisation du biogaz par conversion du CO2 avec une biorafinerie avancée

L'utilisation de sources d'énergie renouvelables est un défi majeur pour les décennies à venir. L'une des façons de répondre à la demande croissante d'énergie est de valoriser les déchets. Parmi les différentes stratégies actuellement développées, la valorisation de biogaz issu des stations de méthanisation apparaît comme une approche prometteuse. En effet, le biogaz est composé majoritairement de méthane, mais aussi de CO2 (environ 40%) non utilisé. Le projet proposé ici est le reformage du biogaz en utilisant une source de biohydrogène renouvelable pour convertir le CO2 restant en CH4 pur. Nous proposons de mettre en place une bioraffinerie avancée autonome qui combinera la photoproduction d'hydrogène à partir de déchets de l'industrie laitière réalisée par la bactérie Rhodobacter capsulatus combiné avec le CO2 présent dans le biogaz dans une unité de biométhanation contenant une culture de Methanococcus maripaludis, une archée méthanogène capable de produire du CH4 à partir de CO2 et de H2 selon la réaction de Sabatier. Le but est de produire du méthane de façon non énergivore et respectueuse de l'environnement.

Top