Introduction de matériaux innovants pour la réalisation de contacts pour les nœuds avancés
Les développements du module contact dans le cadre de FAMES mettent en évidences les limites atteintes par les dimensionnels adressés. Pour les nœuds sub 10nm, une approche en rupture est nécessaire pour pallier aux problèmes de sélectivité, auto alignement, capa parasite… Cette thèse se positionne sur le développement de nouveaux matériaux à gradient résolvant ces problèmes.
Matériaux d'électrode avancées par ALD pour les composants ioniques
L’objectif principal des travaux de thèse est de développer des couches conductrices par la technique ALD (Atomic Layer Deposition) à très faible épaisseur (<10nm) avec des fonctionnalités d’électrodes (très faible résistivité 100). L’autre challenge vise à réduire l’épaisseur des couches à moins de 5nm tout en préservant les propriétés électriques très avancées (résistivité de quelques mOhm). Le travail de thèse comporte plusieurs aspects incluant le procédé et les précurseurs ALD, la caractérisation des couches intrinsèques (physico-chimiques, électrochimique et morphologique) ainsi que l’intégration en dispositif 3D.
Développement d'un nouveau schéma, basé sur la T-coercivité, pour discrétiser les équations de Navier-Stokes.
Dans le code TrioCFD, la discrétisation des équations de Navier-Stokes conduit à une résolution en trois étapes (cf. Chorin'67, Temam'68) : prédiction de la vitesse, résolution de la pression, correction de la vitesse. Si on veut utiliser un schéma de discrétisation en temps implicite, l'étape de résolution de la pression est particulièrement coûteuse. Ainsi, la plupart des simulations sont effectuées à l'aide d'un schéma en temps explicite, pour lequel le pas de temps dépend du pas du maillage, ce qui peut être fortement contraignant. On aimerait élaborer un schéma de discrétisation en temps implicite, en utilisant une formulation stabilisée du problème de Navier-Stokes basée sur la T-coercivité explicite (cf. Ciarlet-Jamelot'25). Il serait alors possible de résoudre directement un schéma implicite sans étape de correction, ce qui pourrait améliorer notablement les performances des calculs. Cela permettrait également d'utiliser la paire éléments finis P1-P0, économe en terme de degrés de liberté, mais instable pour une formulation classique.
Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique
Au-delà de 40 GWd/tU, la périphérie des pastilles développe une microstructure spécifique appelée High Burnup Structure (HBS), caractérisée par la subdivision des grains initiaux en grains très fins d’environ 0,2 µm. À plus fort burnup, des sous-grains apparaissent également au centre, où la température est plus élevée. Ces transformations résultent de l’action combinée des dommages produits par les produits de fission, dont les pertes d’énergie varient entre contributions électroniques et nucléaires. Les pertes électroniques peuvent générer des traces et des réarrangements de dislocations, tandis que les pertes nucléaires créent des défauts interstitiels et lacunaires tels que boucles de dislocations ou bulles. L’effet couplé de ces mécanismes entraîne notamment un grossissement plus rapide des boucles et une diminution du dommage mesuré en spectroscopie Raman, dépendant possiblement de l’orientation cristalline.
Pour mieux comprendre ces phénomènes, des irradiations par faisceaux d’ions sur matériaux modèles, UO2 monocristallin, seront réalisées afin de déterminer le rôle de l’orientation cristalline. Les plateformes JANNuS-Saclay et MOSAIC permettront des irradiations en simple ou double faisceau afin d’étudier séparément et conjointement les pertes d’énergie nucléaire et électronique. Les échantillons seront caractérisés par RBS, NRA en mode canalisé, spectroscopie Raman (in situ et ex situ), ainsi que ponctuellement par microscopie électronique en collaboration avec le CEA Cadarache. Des expériences sur synchrotron pourront compléter l’étude pour analyser l’évolution des contraintes.
Développement d’outil de modélisation pour la corrosion en milieu poreux
Dans un contexte où la durabilité des matériaux s’avère fondamentale pour la sécurité des
installations et la promotion d’une transition énergétique durable, la maîtrise des phénomènes
de corrosion constitue un enjeu majeur pour des secteurs clés tels que le transport d’énergie
décarbonée via des conduites enterrées et le génie civil (hydrogène, nucléaire, infrastructures
souterraines). Le projet CORPORE s’inscrit dans cette problématique en proposant de
développer des modèles avancés de simulation numérique pour étudier la corrosion en milieu
poreux à l’aide de COMSOL Multiphysics. L’objectif scientifique et technologique principal consiste à élaborer une modélisation multiphysique intégrée des mécanismes électrochimiques et de transport au sein de matériaux
poreux : étude de l’influence couplée de la chimie, des propriétés du réseau poreux et des
interactions matériau-environnement sur l’initiation et la propagation de la corrosion. Cette
démarche permettra d’optimiser les stratégies de protection anticorrosion, de réduire les coûts
de maintenance et d’accroître la durée de vie des structures. Sur le plan de l’état de l’art, la
plupart des modèles se focalisent aujourd’hui sur des milieux homogènes et des approches compartimentées. Notre projet se démarque par l’intégration d’une modélisation mécanistique multi-échelles alliée à l’exploitation de données archéologiques pour une validation sur le long terme.
Evaluation de méthodes polytopales pour la CFD sur architecture GPU
Cette proposition de recherche se place dans le cadre de l’étude et de l’implémentation de méthodes polytopales pour résoudre les équations de la mécanique des fluides. Ces méthodes ont pour but de traiter des maillages les plus généraux possibles permettant de s’affranchir de contraintes géométriques de forme ou héritées de manipulations CAO comme des extrusions ou des assemblages faisant apparaître des non-conformités. Ces travaux se placent également dans le cadre du calcul intensif en vue de répondre à l’augmentation des moyens de calcul et en particulier du développement du calcul massivement parallélisé sur GPU.
L’objectif de cette thèse est donc de reprendre les travaux réalisés sur les méthodes de type polytopales existantes dans le logiciel TRUST que sont les méthodes "Compatible Discrete Operator" (CDO) et"Discontinuous Galerkin" (DG), de compléter leur étude notamment pour les opérateurs de convection et d’investiguer d’autres méthodes existantes dans la littérature comme les méthodes "Hybrid High Order"(HHO), "Hybridizable Discontinuous Galerkin" (HDG) ou "Virtual Element Method" (VEM).
Les objectifs principaux sont d’évaluer :
1. le comportement numérique de ces différentes méthodes sur les équations de Stokes/Navier-Stokes,
2. l’adaptabilité de ces méthodes à des architectures hétérogène telles que les GPU.
Optimisation topologique multi-matériaux robuste sous contrainte de fabricabilité appliquée au design d’aimant supraconducteur pour les IRMs haut champ
Les scanners IRM sont des outils très précieux pour la médecine et la recherche, dont le fonctionnement repose sur l'exploitation des propriétés des noyaux atomiques plongés dans un champ magnétique statique très intense. Celui-ci est généré, dans la quasi-totalité des scanner IRM, par un électroaimant supraconducteur.
La conception des électroaimants pour les IRM doit répondre à des contraintes très exigeantes sur l'homogénéité du champ produit. De plus, à mesure que le champ magnétique devient plus intense, les forces s'exerçant sur l'électroaimant augmentent et font émerger le problème de la tenue mécanique des bobinages. Enfin, la « fabricabilité » de l'électroaimant impose des contraintes sur les formes des solutions acceptables. La conception des électroaimants supraconducteurs pour les IRM demande donc un effort minutieux d'optimisation du design, soumise à des contraintes basée sur une modélisation multiphysique magnéto-mécanique.
Une nouvelle méthodologie innovante d'optimisation topologique multiphysique a été développée, sur la base d'une méthode à densité (SIMP) et d'un code de calcul par éléments finis. Celle-ci a permis de produire des designs d'aimants satisfaisant les contraintes sur l'homogénéité du champ magnétique produit et sur la tenue mécanique des bobinages. Toutefois, les solutions obtenues ne sont pas fabricables en pratique, tant du point de vue de la fabricabilité des bobines (enroulements des câbles) que de son intégration avec une structure portante (maintien des bobines par une structure en acier).
L'objectif de cette thèse est d'enrichir la méthode d'optimisation topologique amorcée en formalisant et en implémentant des contraintes de fabrication liées à manière de bobiner, aux contraintes résiduelles résultant d'une pré-tension des câbles au bobinage, et également à la présence d'un matériau de structure pouvant reprendre les efforts transmis par les bobines.
développement d'un procédé couplant la capture CO2 et son hydrogenation en carburant de synthèse (Negative Emission Technologie)
Jusqu’à récemment, les technologies de captage du CO2 étaient développées de manière disjointe de celles de valorisation du CO2 alors que le couplage entre l’étape de désorption du CO2 et la transformation chimique du CO2 généralement exothermique permettrait des gains énergétiques importants.
Des premières solutions couplées ont été proposées récemment mais sont essentiellement à température modérée (60-180°C) [1], voire récemment proches de 225°C [2].
L'objectif de cette thèse de doctorat est d'étudier, tant sur le plan expérimental que théorique un système couplé dans une gamme de température 250-325°C qui permet via une hydrogenation catalytique de type Fischer-Tropsch ou de méthanation l’obtention directe de produits à plus forte valeur ajoutée.
[1] Zhao, Lan, Hai-Yang Hu, An-Guo Wu, Alexander O. Terent’ev, Liang-Nian He, et Hong-Ru Li. « CO2 capture and in-situ conversion to organic molecules ». Journal of CO2 Utilization 82 (avril 2024)
[2] Koch, Christopher J., Zohaib Suhail, Alain Goeppert, et G. K. Surya Prakash. « CO2 Capture and Direct Air CO2 Capture Followed by Integrated Conversion to Methane Assisted by Metal Hydroxides and a Ru/Al2O3 Catalyst ». ChemCatChem 15, no 23
Réduction du ferraillage dans les structures en béton armé par calculs non linéaires et optimisations topologique et évolutionnaire
Les armatures en acier jouent un rôle majeur dans le comportement des structures en béton armé. Néanmoins, de forts conservatismes peuvent parfois être imposés par les règles de dimensionnement, questionnant la réalisation de l’ouvrage (faisabilité) ou sa viabilité (économique, environnementale…). C’est dans ce contexte que s’inscrivent les travaux de thèse. En s’appuyant sur des développements récents, ils viseront à proposer une approche de conception innovante, s’appuyant sur l’utilisation de calculs éléments finis non linéaires, en les associant à des algorithmes d’optimisation topologique (définition des directions de renforcement et des sections d’armatures) et évolutionnaire (positionnement des barres à section d’armatures fixées). La méthode devra permettre par un processus itératif d’aboutir à des solutions répondant à un optimal de conception. Au regard des objectifs à minimiser (qui pourront être contradictoires – coût, faisabilité, résistance, empreinte carbone…), elle orientera ainsi l’état des paramètres d’entrée à partir d’une analyse des sorties d’intérêt. L’application à des cas d’usage complexes, issus de la pratique (jonction poteaux-poutres par exemple) démontrera la pertinence de l’approche, par rapport à des méthodes de dimensionnement plus conventionnelles. Au terme de la thèse, le doctorant aura développé des compétences dans l’utilisation et le développement d’outils à l’état de l’art, allant de la simulation par éléments finis non linéaire jusqu’aux méthodes modernes d’optimisation par intelligence artificielle.
Simulations Monte-Carlo à haute-fidélité du bruit neutronique dans les réacteurs nucléaires de puissance
Les réacteurs nucléaires en fonctionnement sont soumis à diverses perturbations. Celles-ci peuvent inclure des vibrations des crayons et assemblages de combustible dues aux interactions fluide-structure avec le modérateur, ou même des vibrations de la cuve du cœur, des grilles et de l'enceinte pressurisée. L’ensemble de ces perturbations peut entraîner de petites fluctuations périodiques de la puissance du réacteur autour d’un niveau moyen stationnaire. Ces fluctuations de puissance sont appelées « bruit neutronique ». La capacité de simuler différents types de perturbations internes au cœur permet aux concepteurs et exploitants des réacteurs de prédire le comportement du flux neutronique en présence de telles perturbations. Ces dernières années, de nombreux groupes de recherche ont travaillé au développement de modèles numériques pour simuler ces « sources de bruit neutronique » et leurs effets sur le flux neutronique dans le réacteur.
L’objectif principal de cette thèse de doctorat sera de porter les simulations Monte-Carlo du bruit neutronique à l’échelle des calculs industriels réalistes des cœurs de réacteurs nucléaires, avec une modélisation physique haute-fidélité (transport de particules à énergie continue). Dans ce cadre, l’étudiant/e ajoutera de nouvelles capacités de simulation du bruit neutronique à TRIPOLI-5, le code Monte-Carlo de transport de particules de nouvelle génération, développé conjointement par le CEA et l’ASNR, avec le soutien d’EDF spécifiquement pour les calculs à haute performance (HPC).