Modélisation électromagnétique des signatures radar et IA pour la reconnaissance d’objets

Cette thèse offre une opportunité unique de travailler à l’interface entre l’électromagnétisme, la simulation numérique et l’intelligence artificielle, afin de contribuer au développement des systèmes intelligents de détection et de reconnaissance de nouvelle génération. Le/la stagiaire intégrera le Laboratoire Antenne et Propagation (LAPCI) du CEA-LETI, à Grenoble (France), un environnement de recherche de rang mondial disposant d’équipements à la pointe de la technologie pour la caractérisation et la modélisation du canal de propagation, tels que des sondeurs de canal, des émulateurs, des chambres anéchoïques et des simulateurs électromagnétiques avancés. Une collaboration avec l’Université de Bologne (Italie) est prévue durant la thèse.

Cette thèse vise à développer des modèles électromagnétiques avancés de rétrodiffusion radar en champ proche, adaptés aux systèmes radar et JCAS opérant aux fréquences mmWave et THz. Les travaux porteront sur la modélisation physique de la signature radar d’objets étendus, en tenant compte des effets de champ proche, des configurations multi-statiques et multi-antennes, ainsi que de l’influence des matériaux et de l’orientation des cibles. Ces modèles seront validés par simulations électromagnétiques et par des campagnes de mesures, puis intégrés dans des outils de simulation de scène et de propagation multi-trajets de type ray-tracing. Les signatures radar ainsi obtenues seront exploitées pour entraîner des algorithmes d’intelligence artificielle dédiés à la reconnaissance d’objets, à l’inférence des propriétés des matériaux et à l’imagerie radar. En parallèle, des approches d’IA assistée par la physique seront étudiées afin d’accélérer les simulations électromagnétiques et de réduire leur complexité computationnelle. L’objectif final de la thèse est d’intégrer ces informations issues de la rétrodiffusion radar dans un framework de Semantic Radio SLAM 3D, afin d’améliorer la localisation, la cartographie et la compréhension de l’environnement dans des scénarios complexes ou partiellement masqués.

Nous recherchons un(e) étudiant(e) de niveau école d’ingénieur ou Master 2, avec de solides bases en traitement du signal, électromagnétisme, radar ou télécommunications. Un intérêt pour l’intelligence artificielle, la modélisation physique et la simulation numérique est attendu. Des compétences en programmation (Matlab, Python) seront appréciées, ainsi qu’une capacité à travailler à l’interface entre modèles théoriques, simulations et expérimentations. Curiosité scientifique, autonomie et motivation pour la recherche sont essentielles.
La candidature doit inclure un CV, un relevé de notes et une lettre de motivation.

Etude des modes et des mécanismes de défaillances des commutateurs RF à base de matériaux à changement de phase

Les commutateurs à base de matériaux à changement de phase (Phase Change Material, PCM) démontrent d'excellente performances RF (FOM <10fs) et peuvent être cointégrés dans le BEOL des filières CMOS. Leur fiabilité reste cependant très peu étudiée aujourd'hui. Des modes de défaillances tels qu'une rupture du heater, la ségrégation ou l'apparition de cavités dans le matériau sont montrés lors de tests d'endurance, mais les mécanismes d'apparition de ces défaillances ne sont pas discutés. L'objectif de cette thèse sera donc d'étudier les modes et les mécanismes de défaillances pour différentes conditions opératoires (endurance, maintien, puissance). L'analyse se fera au travers de caractérisations électriques et physiques et des méthodes de vieillissement accéléré seront mise en œuvre.

Développement de code et Simulation numérique de l'entraînement de gaz dans les réacteurs rapides refroidis au sodium

Dans les réacteurs nucléaires rapides refroidis au sodium (RNR-Na), la circulation du sodium liquide est assurée par des pompes centrifuges immergées. Sous certaines conditions, des vortex peuvent se développer dans les zones de recirculation, favorisant l'entraînement de bulles de gaz inerte (typiquement argon) présent au-dessus de la surface libre. Si ces bulles sont aspirées dans le circuit primaire, elles peuvent endommager les composants de la pompe et nuire à la sûreté de
l’installation. Ce phénomène reste difficile à prédire, en particulier en phase de conception, et dépend de nombreux paramètres physiques, géométriques et numériques. L’objectif de cette thèse est de contribuer à une meilleure compréhension et une modélisation de l'entraînement de gaz dans les écoulements à surface libre typiques des RNR-Na, à l’aide de simulations numériques de type CFD (Computational Fluid Dynamics), en s’appuyant sur le code open-source TrioCFD, développé par le CEA. Ce code dispose d’un module de suivi d’interface (Front Tracking) particulièrement adapté à la simulation de phénomènes diphasiques avec interface libre déformable.

Modélisation à l’échelle atomique de la ségrégation induite par l’irradiation dans les alliages Zr(Nb)

Les gaines des crayons combustibles en alliage de zirconium constituent la première barrière de sûreté des réacteurs nucléaires à eau pressurisée. Les propriétés mécaniques ainsi que les phénomènes d’oxydation ou de croissance sous irradiation sont contrôlés par la microstructure de ces alliages. Afin de permettre une utilisation plus flexible des réacteurs nucléaires dans le mix énergétique tout en garantissant l’intégrité des gaines combustibles en conditions normales de fonctionnement et en conditions accidentelles, il est essentiel de comprendre en détail l’évolution de la microstructure sous irradiation. De nombreuses études mettent en évidence un rôle important du niobium sur cette évolution microstructurale. Par exemple, le couplage de flux de diffusion entre solutés (Nb) et défauts ponctuels créés par l’irradiation génère des ségrégations locales en Nb, ainsi que des précipités qui ne sont pas observés hors irradiation. La modélisation à l’échelle atomique apporte des informations complémentaires aux observations expérimentales qui permettent de confirmer ou d’infirmer certains scénarios d’évolution. L’objectif de cette thèse est d’appliquer aux alliages de zirconium les méthodes et outils de modélisation développés pour étudier les effets d’irradiation dans les alliages ferritiques, et tout particulièrement les phénomènes de ségrégation induite sous irradiation. Nous réaliserons des calculs de structure électronique dans l’approximation de la théorie fonctionnelle de la densité pour quantifier de façon aussi exhaustive que possible les interactions entre le niobium et les défauts ponctuels. À partir de ces données, nous calculerons les coefficients de transport du système ce qui permettra d’avoir une première discussion quantitative des couplages entre solutés et défauts ponctuels et des effets de ségrégation induite sous irradiation.

Etude expérimentale de l’évolution de la microstructure et de la microchimie, à l’échelle nanométrique, des alliages de zirconium sous irradiation

Les alliages à base de zirconium sont utilisés comme matériau de gainage du combustible nucléaire pour les réacteurs à eau pressurisée. En effet, les alliages de zirconium présentent une faible section efficace d'absorption des neutrons thermiques et possèdent de bonnes propriétés mécaniques ainsi qu’une grande résistance à la corrosion. Malgré plusieurs décennies de recherche, de nombreuses questions demeurent concernant l’évolution de la microstructure et de la microchimie des alliages de zirconium sous irradiation et leurs conséquences sur les propriétés de ces matériaux en réacteur.
L'irradiation neutronique dans les matériaux cristallins produit des cascades de déplacements qui génèrent de grandes quantités de défauts ponctuels, lacunes et interstitiels, qui s’agglomèrent pour former des amas. De plus, les éléments d’alliage se redistribuent sous irradiation sous l’influence de cette concentration élevée de défauts ponctuels. Dans les alliages Zr1%Nb on note notamment l’apparition sous irradiation d’une grande densité de nano-précipités riches en niobium. Ce phénomène surprenant semble avoir des conséquences importantes sur le comportement en fluage post-irradiation ou bien sur le comportement en corrosion en réacteur.
Ce travail de thèse, principalement expérimental, a en particulier pour objectif de mieux comprendre ce phénomène de précipitation sous irradiation des nano-précipités riches en niobium. Un alliage de zirconium Zr1%Nb sera irradié par des ions, à différentes doses d’irradiation et différentes températures, puis sera caractérisé par deux techniques expérimentales à une échelle très fine : la microscopie électronique en transmission (MET) et la sonde atomique tomographique (SAT). Ces deux techniques permettront d’accéder à la répartition des éléments chimiques dans le matériau à l’échelle atomique ainsi qu’à la caractérisation des amas de défauts ponctuels présents. Grâce à ces analyses microstructurales à l’échelle nanométrique, un scénario sera proposé pour expliquer le mécanisme de précipitation sous irradiation. Ses conséquences sur le comportement macroscopique seront également discutées. Forts de cette meilleure compréhension des mécanismes à l’échelle microscopique, les performances des alliages de zirconium en réacteur pourront être encore améliorées.

Etude expérimentale et simulation numérique des mécanismes de déformation et du comportement mécanique des alliages de zirconium après irradiation

La gaine des crayons combustibles des Réacteurs à Eau Pressurisée, fabriquée en alliages de zirconium, constitue la première barrière de confinement du combustible nucléaire. En réacteur, la gaine subit un dommage d’irradiation qui affecte ses propriétés mécaniques. Après leur séjour en réacteur, les crayons combustibles sont transportés et entreposés. Lors de ces différentes phases, le dommage d’irradiation dans la gaine est partiellement restauré conduisant à une nouvelle évolution des propriétés mécaniques du matériau. Toutes ces évolutions restent pour l’heure mal comprises.
L'objectif de ce travail de thèse est de mieux comprendre les mécanismes de déformation et le comportement mécanique après irradiation, et après restauration partielle, des alliages de zirconium. L’objectif opérationnel de cette étude est de mieux prédire le comportement des gaines après utilisation et ainsi garantir le bon confinement du combustible nucléaire et des produits de fission.
Dans ce but, des méthodes expérimentales originales seront mises en œuvre et des simulations numériques de pointe seront utilisées. Des irradiations aux ions seront réalisées afin de reproduire le dommage d’irradiation. Des traitements thermiques seront réalisés sur les échantillons après irradiation. Des échantillons seront ensuite tractionnés in situ, après recuit, dans un microscope électronique en transmission, à température ambiante ou en température. Les mécanismes observés à l’échelle nanométrique et en temps réel seront finalement simulés par dynamique des dislocations, aux mêmes échelles de temps et d’espace. Des simulations de dynamique des dislocations à très grande échelle seront également menée afin de déterminer le comportement monocristallin du matériau. En parallèle de cette étude à l’échelle nanométrique, une étude sera également menée à une échelle micrométrique. Des essais de nano-indentation et de compression de micro-piliers seront réalisés afin d’accéder au comportement mécanique après irradiation et recuit. Les résultats d’essais mécaniques seront confrontés aux simulations numériques grande échelle de dynamique des dislocations.
Cette étude permettra de mieux comprendre le comportement mécanique des alliages de zirconium après irradiation et recuit et ainsi de proposer des modèles de comportement prédictifs, basés sur les mécanismes physiques. A terme, ce travail contribuera à l’amélioration de la sureté lors du transport et de l’entreposage des assemblages combustibles usés.

Effet de la gravité sur l’agitation au sein d’un écoulement turbulent à bulles en canal

La compréhension des écoulements diphasiques et du phénomène d’ébullition représente un enjeu majeur pour le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) à la fois pour la conception et pour la sûreté des centrales nucléaires. Dans un Réacteur à Eau Pressurisée (REP), la chaleur dégagée par le combustible nucléaire est transférée à l’eau du circuit primaire. En situation accidentelle, l’eau du circuit primaire peut passer en régime d’ébullition nucléée, voire évoluer jusqu’à la crise d’ébullition. Si le phénomène d’ébullition fait l’objet de nombreuses études, la dynamique des bulles générées retient également une attention particulière au CEA. Cette thèse s’intéressera au couplage entre la turbulence générée par un écoulement cisaillé et l'agitation induite par les bulles. Son originalité réside dans l’étude de l’effet de la gravité, obtenue par l’inclinaison du canal, un paramètre susceptible de générer des régimes d’écoulement complexes.
Le travail, de nature expérimentale, s'appuiera sur le nouveau dispositif CARIBE du CEA Saclay. La mission du doctorant consistera à caractériser les différents régimes d’écoulement, puis à mener une étude détaillée de l’écoulement en mettant en place une métrologie spécifique (notamment Particule Image Velocymetry (PIV), anémométrie à film chaud, sondes optiques). Mené au sein du laboratoire LE2H, le projet bénéficiera d'une collaboration étroite avec le LDEL (CEA Saclay) et l’IMFT (Toulouse). Le doctorant évoluera dans un environnement dynamique avec d'autres doctorants et présentera ses travaux dans des conférences nationales et internationales.
Nous recherchons un(e) candidat(e) en mécanique des fluides avec un intérêt marqué pour l’expérimentation (stage M2 possible). Cette thèse offre l’opportunité de développer une expertise en instrumentation, analyse de données et écoulements diphasiques turbulents, des compétences très valorisées dans les secteurs de l'énergie, de l'industrie et de la recherche académique.

Étude des solidifications locales dans un Réacteur à Sels Fondus

Dans un Réacteur à Sels Fondus (RSF), le combustible nucléaire se présente sous forme de sel liquide à haute température, qui est son propre caloporteur. Certains transitoires accidentels (sur-refroidissement du sel, fuite) peuvent causer des solidifications locales d'une partie du sel combustible. Ces solidifications ont un impact sur l'écoulement du sel dans le cœur, ainsi que son comportement neutronique, et peuvent mener à des échauffements locaux importants de parois. Ces transitoires sont encore peu étudiés, alors qu'ils ont un impact majeur sur la sûreté et le design d'un RSF.
L'objectif de la thèse est d'étudier différents transitoires accidentels qui peuvent mener à des solidifications locales, et d'étudier l'impact neutronique, thermique et thermo-hydraulique de ces solidifications sur les divers composants du cœur. Ces analyses seront menées en utilisant des outils multi-physiques adaptés aux RSF, tel que le code de CFD TrioCFD, ses extensions neutroniques TRUST-NK et de transport réactif Scorpio, ainsi que le code de neutronique déterministe APOLLO3. Afin de concilier précision et temps de calcul, plusieurs modélisations pourront être envisagées en fonction des transitoires étudiés : modélisation 1D / 3D turbulente (RANS, LES) pour la thermo-hydraulique, diffusion / transport SPn / transport Sn pour la neutronique.

Modélisation numérique de la déchirure ductile sur de longues distances en vue de quantifier les marges des méthodes d’ingénierie

La prédiction des modes de ruine des structures métalliques est une étape essentielle de l’analyse de fonctionnement des composants industriels où des éléments mécaniques sont soumis à des sollicitations importantes (par exemple composants des centrales nucléaires, pipelines, éléments structurels d’aéronefs …). Pour procéder à de telles analyses, il est essentiel de simuler correctement le comportement d’un défaut en régime ductile, c’est-à-dire en présence d’importantes déformations plastiques avant et durant la propagation.
La simulation numérique prédictive de la déchirure ductile est encore une problématique scientifique et technique ouverte malgré des progrès importants réalisés ces dernières années. L’approche dite locale de la rupture, notamment le modèle de Gurson (et sa version modifiée GTN), est largement utilisée pour modéliser la déchirure ductile.Mais son utilisation présente des limites : temps de calcul importants, arrêt de simulation suite à la présence d‘éléments complétement endommagés dans le modèle et non-convergence du résultat lorsqu’on diminue la taille des mailles.
Cette thèse a pour but de faire évoluer le modèle de simulation de déchirure ductile utilisé au LISN, pour l'appliquer aux grandes propagations de fissures sur structures complexes. Et de comparer les résultats obtenus avec les méthodes d'ingénieries qui sont plus simples à mettre en œuvre.

Modélisation de la propagation de fissure en fatigue en présence de contraintes résiduelles – Amélioration de la méthode G-theta

Les contraintes résiduelles sont des champs de contraintes auto-équilibrées que l’on retrouve dans certains composants mécaniques en l’absence de chargement extérieur. Dues au soudage, par exemple, ces contraintes peuvent potentiellement avoir un effet sur le comportement de la structure et sur sa résistance à la rupture. Lorsque l’on doit justifier de l’intégrité d’un composant mécanique, dans le cadre d’une démonstration de sûreté dans le nucléaire, il est impératif de connaître précisément le rôle de ces champs de contrainte sur la résistance du composant. Dans le cas de la propagation de fissure en fatigue, pour modéliser avec précision tous les phénomènes en jeu (redistribution des contraintes, évolution de la plasticité, effet de fermeture), il sera nécessaire d’améliorer les outils numériques, comme les méthodes de maillage et propagation de fissure (AMR, X-FEM…) et l’interpolation de l’intégrale J en cas de fissure débouchantes (méthode Gtheta). La thèse comportera deux volets complémentaires : (a) le développement numérique visant l’amélioration de la méthode Gtheta dans Castem associée à une modélisation de la propagation de fissure en 3D avec AMR et (b) la poursuite des essais applicatifs de propagation de fissure en fatigue dans différentes configurations de contraintes résiduelles.

Top