Thermorégulation diphasique pour les composants semiconducteurs Ultra Grand Gap en diamant

Cette thèse porte sur l’étude d’un système de thermorégulation diphasique pour composants à semiconducteur de puissance ultra grand gap en diamant. Les composants en diamant ayant la particularité d’avoir leur résistance à l’état passant qui diminue lorsque la température augmente, cette thermorégulation vise à optimiser les pertes globales du système ainsi que d’assurer un équilibrage des températures ainsi que des contraintes entre plusieurs composants en diamant en parallèle.
Basé sur un cahier des charges qui sera défini en début de thèse (calories à évacuer, plage de température à réguler), le doctorant aura pour objectif de :
- définir une stratégie de contrôle de la température
- définir un couple matériau / fluide le mieux approprié
- Dessiner le système de thermorégulation
- Mettre en œuvre et valider expérimentalement le système proposé

La thèse abordera des aspects de simulations numérique (modélisation de composants et du système de thermorégulation) ainsi que des essais expérimentaux via la réalisation d’un prototype de TRL3-4 intégré à un système de convertisseur intégrant des diodes en diamant.
L’objectif final est de pouvoir mettre en avant un système innovant modélisé et démontré expérimentalement, où la stratégie de contrôle et les éléments dimensionnels et opératoires dimensionnants auront été investigués et optimisés.

Suivi en ligne des procédés de bio-production par imagerie holographique 3D

La culture des cellules adhérentes est un moyen prometteur pour différentes applications en bioproduction, comme la fabrication et l'administration de biomédicaments, la médecine régénérative, ou le suivi de la différenciation cellulaire. Cependant, elle pose des défis majeurs pour l’analyse des cellules sans affecter l’intégrité du substrat. L’imagerie holographique sans lentille se présente comme une solution prometteuse, capable de capturer des images de cellules sur un grand champ de vue sans aucune étape biochimique supplémentaire.
Cette thèse propose de développer un système d’imagerie holographique 3D pour le suivi des cellules adhérentes en temps quasi-réel, avec des algorithmes avancés pour la reconstruction et l’analyse d’images. Le système testé en terme de précision et robustesse sur des cultures biologiques variées. L’utilisation de l’apprentissage profond permettra la segmentation et l'analyse des cellules en temps quasi-réel, facilitant ainsi le suivi des dynamiques cellulaires. Ce projet innovant promet d'optimiser les procédés biologiques en offrant une vision non invasive des échantillons multicellulaires en 3D, avec des applications potentielles comme le suivi d’organes-sur-puce et de systèmes cellulaires complexes.

Cadre formel pour la spécification et la vérification de flots de communication de processus distribués dans le Cloud

Les clouds sont constitués de serveurs interconnectés via internet, sur lesquels on peut implémenter des systèmes faisant usages d’applications et de bases de données déployées sur les serveurs. L’informatique basée sur les clouds gagne considérablement en popularité, y compris pour y déployer des systèmes critiques. De ce fait, disposer d’un cadre formel pour raisonner sur ce type de systèmes devient une nécessité. Une exigence sur un tel cadre est qu’ils permettent de raisonner sur les concepts manipulés dans un cloud, ce qui inclue naturellement la capacité à raisonner sur des systèmes distribués, composés de sous-systèmes déployés sur différentes machines et interagissant par passage de messages pour réaliser des services. Dans ce contexte, la facilité à raisonner sur les flots de communications est un élément central. L'objectif de cette thèse est de définir un cadre formel outillé dédié à la spécification et la vérification de systèmes déployés sur des clouds. Ce cadre capitalisera sur le cadre formel des "interactions". Les interactions sont des modèles dédiés à la spécification des flots de communications entre différents acteurs d'un système. Les travaux de thèse étudieront comment définir des opérateurs de structuration (enrichissement, composition) et de raffinement pour permettre de mettre en œuvre des processus de génie logiciel classique en se basant sur les interactions.

Modélisation multi-échelle du maclage dans l’étain

Le maclage est un mécanisme de déformation displacif, caractérisé par une déformation continue de la matière. Bien que largement étudié pour d’autres matériaux industriels comme les alliages de titane, ce mécanisme de plasticité reste peu connu et modélisé de manière incomplète pour des structures cristallographiques complexes. Pourtant, du fait du nombre réduit de symétries de ces structures, le glissement de dislocations s’avère insuffisant pour accommoder la déformation selon certaines directions de chargement, nécessitant l’activation du maclage. C'est le cas pour l'étain, qui possède une structure tétragonale. En particulier, le maclage contribue fortement à la réponse mécanique de l'étain aux forts taux de déformations et aux faibles températures. Dans les régimes intermédiaires de température et de taux de déformation, une compétition entre plasticité par dislocations et par maclage peut s’installer, rendant cruciale la description du couplage entre ces deux phénomènes. En proposer une meilleure description permettra d’apporter un nouvel éclairage sur les données expérimentales disponibles au CEA DAM. L'objectif de la thèse est de dérouler une démarche multiéchelle, de la dynamique moléculaire jusqu'à l'échelle du milieu continu, validée sur l'expérience, pour aboutir à un modèle permettant la description du comportement de l'étain sur une large gamme de températures et de taux de déformation.

Développement d'hydrogels injectables adhésifs pour le traitement des déchirures rétiniennes

Les déchirures rétiniennes entrainant le décollement de la rétine constituent une affection oculaire grave (20 à 25 cas pour 100 000 habitants en France chaque année), nécessitant une intervention chirurgicale urgente. Les traitements actuels consistent à retirer le vitré, injecter un gaz comme agent de tamponnement, et à sceller les déchirures au laser. Cependant, cette méthode présente des restrictions pour le patient (position allongée prolongée) et peut entrainer des complications (cataractes). Des hydrogels injectables sont étudiés comme alternatives aux agents de tamponnement, mais ils ne possèdent pas de propriétés adhésives pour suturer les déchirures, et un traitement au laser reste nécessaire. Des colles chirurgicales ont également été testées, mais les adhésifs à base de cyanoacrylate sont toxiques, ceux à base de fibrine sont difficiles à utiliser dans l’œil, et les matériaux à base d’acide hyaluronique (HA) actuels manquent de stabilité et d’adhésivité.
Ce projet de thèse vise à développer un hydrogel à base de HA stérile et injectable, doté de fortes propriétés adhésives pour sceller les déchirures rétiniennes. Les propriétés visées pour l’hydrogel incluent la biocompatibilité, l’injectabilité (aiguille 30G), l’adhésivité tissulaire (1,5 à 3,7 N) et une administration rapide (en moins d’une heure). Notre équipe a précédemment mis au point un hydrogel de HA injectable à réticulation dynamique offrant une stabilité à long terme, une biocompatibilité et une transparence optique. Pour lui conférer des propriétés d’adhésion tissulaire, deux stratégies seront testées : (1) l’ajout d’acide tannique adhésif dans la formulation de l’hydrogel ou (2) le greffage de groupes adhésifs sur le squelette de HA. La biocompatibilité de l’hydrogel sera évaluée, ainsi que ses propriétés adhésives pour la réparation de la rétine en employant différents modèles précliniques.
Cet hydrogel innovant pourrait simplifier la chirurgie rétinienne, réduire les complications, et diminuer les coûts. Au-delà de la réparation rétinienne, il pourrait être applicable dans la chirurgie de la cornée et d’autres domaines médicaux.

Implémentation du TFHE sur des systèmes embarqués à architecture RISC-V

Le chiffrement entièrement homomorphe (FHE, Fully Homomorphic Encryption) est une technologie qui permet d’effectuer des calculs directement sur des données chiffrées, ce qui signifie que l’on peut traiter des informations sans jamais connaître leur contenu réel. Par exemple, elle pourrait permettre d’effectuer des recherches en ligne où le serveur ne voit jamais ce que vous cherchez, ou encore des tâches d’inférence en intelligence artificielle sur des données privées qui demeurent entièrement confidentielles. Malgré son potentiel, les implémentations actuelles du FHE restent très coûteuses en calcul et nécessitent une puissance de traitement considérable, reposant généralement sur des processeurs (CPU) ou des cartes graphiques (GPU) haut de gamme, avec une consommation énergétique importante. En particulier, l’opération de bootstrapping représente un goulet d’étranglement majeur qui empêche une adoption à grande échelle. Les implémentations du FHE basées sur CPU peuvent dépasser 20 secondes sur des architectures x86 standards, tandis que les solutions ASIC personnalisées, bien que plus rapides, sont extrêmement coûteuses, dépassant souvent 150 mm² de surface en silicium. Ce projet de doctorat vise à accélérer le schéma TFHE, une variante plus légère et plus efficace du FHE. L’objectif est de concevoir et de prototyper des implémentations innovantes de TFHE sur des systèmes basés sur RISC-V, en visant une réduction significative de la latence du bootstrapping. La recherche explorera les synergies entre les techniques d’accélération matérielle développées pour la cryptographie post-quantique et celles applicables à TFHE, ainsi que des approches d'accélération de type "tightly-coupled" entre les cœurs RISC-V et les accélérateurs dédiés. Enfin, le projet étudiera la possibilité d’intégrer un domaine de calcul entièrement homomorphe directement au sein du jeu d’instructions du processeur.

Etude des synergies Zn, Cr, Fe, Ni sur la cristallisation au sein de verres simplifiés d’intérêt nucléaire

En France, l’utilisation de l’énergie nucléaire pour la production d’électricité génère des déchets dits de Haute Activité lors de l’étape du retraitement des combustibles usés. Ces déchets sont immobilisés en matrice vitreuse borosilicatée, dont la structure permet d’incorporer à l’échelle atomique un grand nombre d’éléments chimiques, et garantissant d’excellentes propriétés de comportement à long terme. Les enjeux à venir de la filière conduisent à une évolution des combustibles mis en œuvre dans les réacteurs, ce qui peut potentiellement induire de fait une évolution de la nature des flux à vitrifier.
Parmi les éléments à étudier, on retrouve notamment le chrome, dont la solubilité est relativement faible dans les verres borosilicatés, présentant des synergies de cristallisation avec d’autres éléments contenus dans les verres de conditionnement, comme le fer, le nickel et le zinc. Ce travail de thèse vise donc à étudier les effets synergiques de Cr, Ni, Fe et Zn sur des verres borosilicatés peralcalins simplifiés d’intérêt nucléaire, afin de mieux appréhender les affinités de cristallisation entre les différents éléments et ainsi identifier la nature et la teneur des différentes phases susceptibles de se former
Le/la doctorant/doctorante bénéficiera des compétences reconnues du laboratoire sur la formulation de verres et l’étude de leurs propriétés physico-chimiques. L’ensemble des moyens mis à disposition permettra une approche globale du sujet, en travaillant sur une thématique en plein essor et porteuse de forts enjeux industriels. L’expérience acquise pendant ce travail interdisciplinaire pourra se valoriser dans le domaine des matériaux.

FRITTAGE EN PHASE LIQUIDE TRANSITOIRE DE PASTILLES DE COMBUSTIBLES UOX ET MOX

Le sujet est en rapport avec la fabrication des combustibles UOX et MOX. Le principal objectif est d'identifier des couples de dopants permettant de former une phase liquide transitoire lors de l'étape de frittage des combustibles. Pour cela des calculs de diagrammes de phases par la méthode CALPHAD devront être réalisés, en prenant également en compte les impératifs liés à la phase d'irradiation une fois le combustible chargé en réacteur. Les couples les plus prometteurs seront ensuite évalués dans le cadre de la fabrication d'un combustible UOX et d'un combustible MOX. Les expériences à réaliser seront essentiellement: la préparation d'une matière pulvérulente, la mise en forme par pressage de cette matière sous la forme de cylindres représentatifs de pastilles de combustibles et l'étude du frittage à haute température de ces cylindres de formulation UOX et MOX. Après frittage, une étape très importante sera la caractérisation à l'échelle macroscopique et microscopique de ces pastilles. La première année de la thèse se déroulera sur le centre CEA de Cadarache au sein de l'ICPE Laboratoire des Combustibles Uranium. Les deux suivantes se dérouleront au sein de l'INB Atalante sur le site CEA de Marcoule. Le candidat travaillera au sein de deux installations uniques en Europe et pourra développer une expérience sur le travail en milieu nucléaire avec une approche très novatrices qui permettra la publication de résultats scientifiques originaux.

Etude de nouveaux concepts d’extracteurs liquide-liquide miniaturisables et parallélisables

Dans le processus de développement de procédés, leur miniaturisation représente un fort enjeu pour la RetD en amont.
En effet, la miniaturisation des procédés présente de nombreux avantages, en termes de réduction des volumes de matières premières, de gestion des déchets, possibilités de criblage, automatisation et de sécurité pour le personnel.
A ce jour, le procédé d’extraction liquide-liquide à contre-courant n’a pas de solution convaincante de miniaturisation alors que les applications sont nombreuses : en pharmacie, synthèse chimique, nucléaire ou médecine nucléaire.
Le CEA-ISEC à Marcoule a développé de nouveaux outils microfluidiques pour réaliser ces opérations de façon simple et opérationnelle en se basant sur la compréhension fine des instabilités des écoulements diphasiques dans des capillaires.
Ce sujet d’étude sur 3 ans propose :
- D’expérimenter, comprendre et modéliser finement les écoulements et transferts de masse
- D’optimiser puis transposer les phénomènes à des volumes industriellement impactants
- Publier et participer à des congrès internationaux
Le doctorant bénéficiera d’un apprentissage du monde de la recherche dans une équipe valorisant la qualité dans l’encadrement et le devenir de ses doctorants, dans une équipe pluridisciplinaire allant du génie des procédés à l’instrumentation et avec des projets allant de la recherche à l’industrie.
Des compétences générales en génie chimique et transfert de masse sont requises. Des compétences de collaboration avec nos partenaires académiques seront essentielles à la réussite du projet d’étude.

Apprentissage informé par la physique pour l’imagerie ultrasonore multiélément super-résolue

Cette thèse vise à développer une nouvelle génération de méthodes de focalisation ultrasonore pour l’imagerie par réseaux multiéléments (phased arrays), en combinant apprentissage profond, modélisation physique et transport optimal. Le travail repose sur deux axes complémentaires. Le premier consiste à concevoir une variante repondérée et probabiliste de la Total Focusing Method (TFM), où les poids de focalisation sont appris de manière itérative grâce à un réseau de convolution et normalisés le long des isochrones définis par un champ de temps de vol neuronal. Cette approche permet une focalisation plus adaptative, interprétable et robuste dans des environnements complexes.

Le second axe propose une reformulation complète de la TFM comme un problème de barycentre de Wasserstein, dans lequel chaque image partielle est modélisée comme une distribution empirique sur un espace combinant position spatiale et amplitude ultrasonore. Un coût de transport informé par la géométrie acoustique — construit à partir de distances géodésiques minimisant les variations de temps de vol — permet d’obtenir des barycentres grid-free offrant une localisation des réflecteurs plus précise et physiquement cohérente. L’objectif global est d’ouvrir une nouvelle voie en imagerie ultrasonore, fondée sur l’intégration de la physique, de l’intelligence artificielle et des outils avancés du transport optimal.

Top