Étude de l’endommagement mécanique des cellules à oxyde solide: impact des modes de fonctionnement et des profils de chargement sur la réponse électrochimique
Les cellules à oxyde solide (SOCs) sont des convertisseurs électrochimiques fonctionnant à hautes températures qui peuvent être utilisés pour produire soit de l’électricité en mode pile à combustibles (SOFC) ou de l’hydrogène en mode d’électrolyse (SOEC). Grâce à un large éventail de cas d’application, cette technologie est susceptible d’offrir de nombreuses solutions innovantes pour assurer la transition vers l’utilisation massive d’énergies renouvelables. Néanmoins, malgré tous leurs avantages, l'industrialisation à grande échelle de cette technologie reste entravée par la durabilité des SOCs. En effet, les SOCs sont limitées par de nombreux phénomènes physiques dont notamment l’endommagement mécanique des électrodes. Par exemple, la formation de microfissures dans l’électrode dite à hydrogène est une des sources majeures de dégradation. Les mécanismes mis en jeu ainsi que l’impact des microfissures sur les performances restent cependant mal connus à ce jour. Par une approche de modélisation multi-physique, cette thèse propose (i) de simuler les dommages dans la microstructure de l'électrode et (ii) de calculer leur impact sur la perte de performances. Une fois le modèle validé sur des expériences originales, une analyse de sensibilité sera conduite et des recommandations seront émises pour des électrodes optimisées.
Barrières thermiques à propriétés mécaniques améliorées par projection plasma
L'optimisation des performances des turbines aéronautiques nécessite l'amélioration des performances des matériaux constituant la chambre de combustion ainsi que les pièces mobiles en aval comme les aubes par exemple. Largement utilisée dans l'industrie aéronautique, la projection plasma permet la mise en oeuvre de revêtements céramiques à faible conductivité permettant la protection thermique des composants métalliques. Les contraintes mécaniques croissantes observées imposent le développement de revêtements présentant une résistance mécanique améliorée. Dans ce contexte, cette thèse vise à élaborer des barrières thermiques par projection plasma, combinant une résistance mécanique accrue et un niveau d'isolation thermique au moins équivalent à la zircone yttriée utilisée industriellement dans les turbines actuelles. L'étude portera notamment sur l'amélioration de la ténacité, cette capacité du matériau à résister à la rupture en présence d'une fissure. Parmi les facteurs susceptibles d'influencer la ténacité, peuvent être cités : la composition, la microstructure, l'ajout de renforts. Le recours à des solutions originales, par exemple bio-inspirées, est envisageable.
Approche thermodynamique et expérimentale de la réactivité dans les systèmes multiconstitués Silicium-Métal-Carbone pour le brasage des céramiques
Le développement d'assemblages de matériaux à base de céramique joue un rôle fondamental pour l'innovation technologique dans de nombreux domaines d'ingénierie. Le choix des matériaux et du procédé d'assemblage doit permettre d'assurer un ensemble fonctionnel, fiable et durable, dont les propriétés répondent au cahier des charges de l'application.
La thèse s'inscrit dans le cadre du développement d'alliages de brasage optimisés pour l'assemblage de céramiques (prioritairement le carbure de silicium) envisagées pour diverses applications en environnements sévères dans le domaine de l'énergie en particulier. En effet, la conception de ces matériaux nécessite une bonne connaissance de la réactivité à l'interface alliage liquide / céramique. Dans ce contexte, la thèse contribuera au développement d'une approche thermodynamique et expérimentale afin de prédire et de comprendre la réactivité dans les systèmes multi-constitués Si-Métal-Carbone. Ce travail comprend une étude du mouillage et de la réactivité interfaciale d’alliages sélectionnés (expériences de mouillage et brasage, caractérisation fine des interfaces par différentes techniques telles que MEB-FEG, MET, diffraction de rayons X, XPS) avec l’appui de la modélisation thermodynamique à l’aide de la méthode CALPHAD. Ce travail à fort caractère expérimental sera réalisé dans un environnement dynamique et collaboratif.
Approche intégrée matériau–procédé–dispositif pour la conception de transistors RF haute performance sur technologies nanométriques avancées
Cette thèse vise à développer et optimiser des technologies de dispositifs semi-conducteurs avancés pour applications radiofréquences, en s’appuyant sur la filière FD-SOI et en explorant les architectures tridimensionnelles émergentes telles que les transistors GAA et CFET. L’objectif scientifique principal est d’améliorer les performances RF essentielles — telles que fT, fmax, la linéarité ou le bruit — par une co-optimisation conjointe des matériaux, des procédés technologiques et de la conception des dispositifs.
Le projet s’appuiera sur une approche intégrée combinant développement expérimental, analyses structurales, caractérisations électriques et simulations TCAD avancées. Cette méthodologie permettra d’identifier les mécanismes limitants propres à chaque type d’intégration, de quantifier leur potentiel respectif et d’établir un lien direct entre les choix matériaux/processus et les performances RF mesurées. Une attention particulière sera portée à l’ingénierie fine des architectures de transistors, incluant notamment l’optimisation des spacers, des matériaux de grille, du positionnement des jonctions ainsi que des facettes épitaxiées source/drain. La co-conception procédé/dispositif visera à réduire les résistances d’accès, les capacités parasites et les effets de non-linéarité susceptibles de dégrader les performances haute fréquence.
À travers une modélisation comparative des filières planaires FD-SOI et des intégrations tridimensionnelles GAA/CFET, la thèse cherchera à dégager des orientations technologiques pertinentes pour les futures générations de transistors RF. Situé à l’interface entre science des matériaux, physique des dispositifs et ingénierie de fabrication, ce travail ambitionne de fournir des recommandations pour le développement de technologies RF haute efficacité destinées aux communications 5G/6G, aux radars automobiles et aux systèmes IoT basse consommation.
PCB instrumenté pour la maintenance prédictive
La fabrication des équipements électroniques et plus particulièrement celui des PCB (Printed Circuit Board) occupent une part importante de l’impact environnemental du numérique qui doit être minimisé. Dans une logique d’économie circulaire, le développement d’outils de suivi et de diagnostic de l’état de santé de ces cartes pourrait alimenter le passeport numérique du produit et faciliter leur réutilisation dans une seconde vie et. Dans une logique de maintenance préventive et prescriptive, ces outils pourraient augmenter leur durée de vie en évitant un remplacement périodique inutile dans les applications pour lesquelles la fiabilité est une priorité ainsi que d’adapter leur usage dans le but d’éviter leur détérioration prématurée.
Cette thèse propose d’explorer l’instrumentation innovante de PCB à l’aide de capteurs ‘virtuels’, estimateurs avancés alimentés par des modalités de mesure (de type piézoélectriques, ultrasonores, etc.) qui pourraient être intégrées au sein même des PCB. L’objectif est de développer des méthodes de suivi de l’état de santé des cartes, tant sur le plan mécanique (fatigue, contraintes, déformations) qu’électronique.
Une première étape consistera à réaliser un état de l’art et des simulations pour sélectionner les capteurs pertinents, définir les grandeurs à mesurer et optimiser leur implantation. La modélisation multi-physique et la réduction de modèles permettront ensuite de relier les données à des indicateurs d’intégrité du PCB caractérisant son état de santé. La démarche combinera modélisations numériques, validations expérimentales et méthodes d’optimisation multiparamétriques.
Vers des plateformes microfluidiques automatisées et reconfigurables pour l'étude et le développement de procédés de traitement/recyclage du combustible nucléaire
L’objectif principal de ce travail de thèse est la conception et le développement d’une première plateforme microfluidique automatique et reconfigurable, dédiée à la recherche et au développement pour le cycle du combustible nucléaire. Dans un contexte où la maîtrise des procédés nucléaires reste un enjeu essentiel, tant pour la production d’énergie que pour la gestion durable des matières nucléaires, les dispositifs microfluidiques apparaissent comme une voie particulièrement prometteuse. Ces laboratoires autonomes sur puce ont déjà démontré leur potentiel dans des domaines variés comme la chimie, la science des matériaux ou la biologie. Leur adaptation aux procédés nucléaires permettrait de réduire les risques d’exposition aux rayonnements, de limiter la production de déchets et d’optimiser les ressources en multipliant les expériences, de manière sûre, rapide et reproductible. Depuis une dizaine d’années, le DMRC mène des études phénoménologiques sur les principales étapes du procédé (dissolution, extraction par solvant, précipitation, etc.) en utilisant des dispositifs microfluidiques. Il a également développé des PhLoCs (Photonic-Lab-on-Chips), permettant de miniaturiser plusieurs techniques analytiques (spectroscopie UV-Vis, LES, holographie, etc.) et d’assurer un suivi en ligne des phénomènes étudiés. Cependant, aucune plateforme véritablement autonome et totalement automatisée ne permet aujourd’hui de combiner procédés et suivi analytique intégré.
L’objectif de la thèse est donc de franchir ce cap en concevant un dispositif modulaire, où plusieurs puces fonctionnelles pourront être associées pour réaliser à la fois des étapes du procédé (par ex. la séparation uranium/plutonium) et des mesures en ligne, dans une configuration flexible et adaptée aux environnements nucléaires. En parallèle, de nouvelles techniques instrumentales (FTIR, UV-Vis-NIR, etc.) seront intégrées directement sur puce, afin d’étudier des étapes critiques comme la dégradation des solvants. Ce projet ambitionne ainsi de poser les bases de plateformes microfluidiques de nouvelle génération, alliant sûreté, modularité et performance au service de la recherche nucléaire. À l’issue de cette thèse, le candidat aura développé une expertise unique en microfluidique appliquée aux procédés nucléaires, combinant instrumentation optique et automatisation. Ces compétences ouvriront des perspectives solides dans la recherche et l’ingénierie des procédés innovants.
Sondage de circuits intégrés par faisceau électronique
La sécurité des systèmes numériques repose sur l’établissement de chaînes de confiance cryptographiques allant du matériel jusqu’aux applications finales. Les circuits intégrés sont à la base des chaines de confiances et stockent pour cela des secrets qui, via différentes contremesures, sont supposés non modifiables et non observables.
L’une des menaces connues dans la littérature est l’utilisation de Microscopes Électronique à Balayage (MEB) pour l’extraction de signaux sensibles. En effet, le MEB, via le phénomène de contrastes de potentiel permet de déterminer « visuellement » la valeur d’un ou plusieurs signaux présents dans une zone du circuit, cette zone pouvant être un niveau de métal ou un transistor. Cette utilisation du MEB sur la face avant des circuits est connue et mise en œuvre depuis les années 90 dans le domaine d’analyse de défaillance. Cependant cette technique est devenue inapplicable avec les progrès des technologies, notamment la finesse de gravure et l’augmentation du nombre de couche de métaux. Des travaux récents (2023) ont montré que le sondage avec MEB était possible via la face arrière du circuit, en observant les transistors via le substrat de silicium. Ces travaux ont été effectués sur des technologies assez anciennes (135 µm). Il est aujourd’hui essentiel de déterminer si ces menaces sont avérées sur les technologies récentes (Bulk, FD-SOI, FinFET), car les futures chaînes de confiance pourraient être compromise.
Un premier défi de la thèse est de fiabiliser le processus de préparation d’échantillon permettant l’accès aux parties actives des transistors via la face arrière tout en gardant le système fonctionnel. Un second défi sera de caractériser les phénomènes de contraste de potentiels et d’observations via l’instrumentation de MEB en vue d’extraire des secrets. Une fois la technique maitrisée nous chercherons à comparer l’effet de la technologie sur cette famille d’attaque et en particulier déterminer les potentiels avantages intrinsèques de la technologie FD-SOI en vue de s’en prémunir.
Conception et Optimisation d'un Procédé Innovant pour la Capture du CO2
Dans une enquête réalisée en 2023 par la BEI, deux tiers des jeunes français ont affirmé que l’impact climatique des émissions de leur potentiel futur employeur est un facteur important au moment de choisir un emploi. Mais pourquoi s’arrêter là quand vous pouvez choisir de travailler activement pour la réduction de ces émissions, tout dans le cadre d’un sujet de recherche riche et passionnant ? Au Laboratoire de Simulation de Procédés et analyse de Systèmes, nous proposons une thèse qui vise à concevoir et ensuite à optimiser un procédé pour la capture du CO2 dans les rejets gazeux des industries. Son principe de fonctionnement dérive du procédé « Benfield » pour la capture du CO2. Nous proposons des conditions opératoires optimisées pour lesquels le procédé Benfield serait plus performant. Le deuxième axe d’innovation consiste dans une étude de couplage thermique avec une installation industrielle disposant de la chaleur à céder.
La recherche sera menée en collaboration avec le CEA de Saclay et le Laboratoire de Génie Chimique (LGC) à Toulouse. Dans un premier temps, le thésard va réaliser des travaux de simulation numérique à l’aide d’un logiciel de simulation de procédé (ProSIM). Ensuite, il pourra explorer et proposer différentes solutions pour minimiser le besoin énergétique du procédé. Les schémas de procédé obtenus pourront être validés expérimentalement au LGC, où le thésard sera encadré par des experts en procédé de transfert liquide-gaz. Il sera responsable de mettre en place un montage expérimental à l’échelle pilote pour acquérir des données sur les étapes d’absorption et désorption en colonne, avec un garnissage de structure innovante conçu par la fabrication additive. Il conduira lui-même les manips et pourrait éventuellement encadrer un stagiaire pour le support aux acquisitions expérimentales.
Si vous êtes passionné du Génie de Procédés et que vous cherchez un sujet de thèse stimulant et de grand impact pour la société, postulez et intégrez nos équipes !
Compréhension des mécanismes de dissolution oxydante de (U,Pu)O2 en présence d'Ag(II) généré par ozonation
Le recyclage du plutonium contenu dans les combustibles MOx, constitués d’oxydes mixtes d’uranium et de plutonium (U,Pu)O2, repose sur une étape clé : la dissolution complète du dioxyde de plutonium (PuO2). Or, ce dernier se dissout difficilement dans l’acide nitrique concentré utilisé industriellement. L’ajout d’une espèce fortement oxydante, telle que l’argent(II), permet d’accélérer cette dissolution : c’est le principe de la dissolution oxydante. L’ozone (O3) est utilisé pour régénérer en continu l’oxydant Ag(II) dans le milieu. Si ce procédé a démontré son efficacité, les mécanismes mis en jeu demeurent encore mal connus et peu documentés. Leur compréhension constitue un préalable indispensable à toute industrialisation future.
L’objectif de cette thèse est de mieux comprendre les mécanismes d’interaction dans le système HNO3/Ag/O3/(U,Pu)O2. Le travail proposé s’articulera autour d’une étude expérimentale paramétrique de complexité croissante. Dans un premier temps, les mécanismes de génération et de consommation d’Ag(II) seront étudiés dans le système simple HNO3/Ag/O3. Puis dans un second temps, l’influence de divers paramètres sur la dissolution oxydante de (U,Pu)O2 sera examinée. Ces résultats permettront d’élaborer un modèle cinétique de dissolution en fonction des paramètres étudiés.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie, maîtrisera un large panel de techniques expérimentales ainsi que des méthodes de modélisation pointues. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, tant dans le secteur nucléaire que dans d’autres domaines de la chimie et des matériaux.
Analyse et conception de surfaces à impédance à dispersion contrôlée
L'ingénierie de la dispersion (DE) désigne le contrôle de la propagation des ondes électromagnétiques dans une structure en modulant la relation entre la fréquence et la vitesse de phase. Grâce à des matériaux et des surfaces artificiellement conçus, il est possible d’ajuster cette relation afin d’obtenir des comportements de propagation non conventionnels, permettant ainsi un contrôle précis des effets dispersifs du système. Dans le domaine des antennes, le DE peut améliorer plusieurs aspects essentiels des performances en rayonnement, notamment la largeur de bande en gain, la précision de balayage du faisceau et, plus généralement, la réduction des distorsions inhérentes aux variations de fréquence. Il peut également permettre des fonctionnalités supplémentaires, telles que le fonctionnement multibande ou le comportement multifocal dans des antennes à lentilles ou réflecteurs.
Cette thèse vise à étudier les phénomènes physiques régissant le contrôle des vitesses de phase et de groupe dans des surfaces artificielles bidimensionnelles présentant des impédances effectives dépendantes de la fréquence. Une attention particulière sera portée aux architectures à alimentation spatiale, telles que les réseaux transmetteurs et réflecteurs, où la dispersion joue un rôle déterminant. L’objectif est d’établir des formulations analytiques permettant de contrôler simultanément le retard de groupe et le retard de phase, de développer des modèles généraux et d’évaluer les limites fondamentales de ces systèmes en termes de performances en rayonnement. Ce travail est particulièrement pertinent pour les antennes à très fort gain, domaine dans lequel l’état de l’art reste limité. Les conceptions actuelles basées sur le DE présentent généralement une bande passante étroite, et aucune solution compacte à très fort gain (> 35 dBi) ne parvient encore à surmonter les dégradations liées à la dispersion, telles que la baisse de gain ou le dépointage du faisceau.
Le doctorant développera des outils théoriques et numériques, étudiera de nouveaux concepts de cellules unitaires périodiques pour les surfaces d’impédance, et concevra des architectures d’antennes avancées exploitant des principes tels que le délai de temps réel, le fonctionnement multibande à ouverture partagée ou la focalisation en champ proche avec minimisation des aberrations chromatiques. Le projet explorera également des technologies de fabrication alternatives afin de dépasser les contraintes des procédés classiques de PCB et de libérer de nouvelles capacités de contrôle de la dispersion.