Influence de la densité d'ionisation dans l'eau sur des solutés fluorescents. Application à la Détection de rayonnements alpha
La localisation et l’identification rapide, à distance, des sources d’émission de particules alpha et beta sur les surfaces ou des cavités humides ou dans des solutions, dans des installations nucléaires en démantèlement, ou à assainir, est un véritable enjeu.
Le projet de thèse proposé vise à développer un concept de détection à distance d'une lumière de fluorescence issue de processus de radiolyse de l'eau sur des molécules ou des nano-agents. La caractérisation temporelle par des mesures de durées de vie de fluorescence permettra d’attribuer la détection à un type de rayonnement, dépendant de son transfert d'énergie linéique (TEL). Dans le pic de Bragg des rayonnements alpha où le TEL est maximal, la densité d'ionisation due à ce TEL influence la durée de vie de fluorescence. Cependant, des effets de débits de dose seront aussi à considérer.
Des molécules et nanoparticules candidates à former des produits fluorescents et sensibles à la densité d’ionisation et de radicaux produits dans les traces à temps très courts, seront identifiées par un travail guidé de bibliographie, puis testées et comparées par des mesures. Les mesures spectrales (absorption et fluorescence) et des durées de vie de fluorescence des espèces fluorescentes correspondantes seront réalisées en utilisant la méthode TCSPC (Time Corelated Single Photon Counting) multicanale (16 canaux). Des faisceaux d'ions ou des particules alpha provenant de sources scellées seront utilisés pour faire une preuve de concept dans le cadre du programme CEA assainissement/démantèlement.
Modélisation thermo-hydraulique d’un générateur de vapeur et propagation d’espèces chimiques
Les générateurs de vapeur sont des composants essentiels des réacteurs nucléaires dont la fonction principale est l’échange de chaleur. Les espèces chimiques présentes dans les générateurs de vapeur sont à l’origine de nombreux phénomènes parasites (colmatage, encrassement, dépôt de boue…). La simulation numérique du transport des espèces, prenant en compte la migration d’espèces chimiques et les échanges entre espèces, à la fois intra- et inter-phasiques, permettra une meilleure connaissance et une meilleure gestion de ces problèmes. La résolution numérique des systèmes de transport d’espèces présente de réelles difficultés notamment la gestion de l’apparition et de la disparition totale de certaines espèces, de forts taux de vide, ainsi que des temps de calcul rapidement excessifs.
Tout en se basant sur le nouveau code pour les composants nucléaires développé au STMF, la thèse adressera les trois principales problématiques scientifiques suivantes :
• En amont, l’analyse de méthodes numériques permettant en particulier la gestion de l’évanescence, comme mentionné plus haut, et la modélisation thermo-hydraulique à forts taux de vide. On s’appuiera pour cela sur les schémas numériques PolyMAC et PolyVEF, déjà implémentés dans le code composant.
• La modélisation physique d’un générateur de vapeur dans le nouveau code composant, via l’ajout (en C++) des corrélations spécifiques aux générateurs de vapeur, la complétion des lois d’état déjà disponibles, ….
• La détermination des espèces chimiques majeures à transporter, afin de pouvoir prendre en compte à la fois la thermo-hydraulique mais aussi la chimie. Le couplage algorithmique entre la thermo-hydraulique et la chimie, prenant en compte une rétroaction, étant l’objectif à long terme.
Tout en bénéficiant de la parallélisation existante du code composant, la modélisation thermo-hydraulique et chimique se fera en tenant compte des contraintes sur les temps de calcul.
Modélisation chimie-mécanique du couplage entre carbonatation, corrosion des armatures et fissuration d’un milieu cimentaire
La corrosion des armatures est une des principales causes de dégradation prématurée des infrastructures en béton, y compris dans le domaine nucléaire où le béton est largement utilisé dans les enceintes de confinement et les structures de stockage de déchets. La carbonatation due à la pénétration du CO2 dans le béton entraîne une baisse du pH de la solution porale, favorisant la corrosion des armatures. Cette corrosion entraine la formation de produits expansifs pouvant provoquer la fissuration du matériau. Le travail de thèse, proposé dans le cadre d’une collaboration au sein d’un projet européen entre le CEA de Saclay, l'École des Mines de Paris - PSL et l'IRSN, vise à développer un modèle numérique pour simuler ces phénomènes. Le modèle combine un code de transport réactif (Hytec) et un code d'éléments finis (Cast3M) pour étudier les effets locaux de la corrosion par carbonatation sur la fissuration du béton. Ce projet s’appuiera sur des travaux expérimentaux réalisés en parallèle permettant de recueillir des données pour identifier les paramètres et valider le modèle. La première partie du travail se concentrera sur la modélisation de la carbonatation des matériaux cimentaires en conditions insaturées, tandis que la deuxième portera sur la corrosion des armatures due à la baisse de pH induite par cette carbonatation. Le modèle décrira la croissance des produits de corrosion et leur expansion induisant des contraintes dans le béton et une possible microfissuration.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multi-physiques et multi-échelles. La thèse sera réalisée principalement au CEA de Saclay et à l'École des Mines de Paris – PSL (Fontainebleau).
Amélioration de la prédictivité des simulations des grandes échelles par apprentissage machine guidé par des simulations haute fidélité
Cette thèse vise à explorer l'application des techniques d'apprentissage machine pour améliorer la modélisation de la turbulence et les simulations numériques en mécanique des fluides. On s’intéresse plus spécifiquement à l’application des réseaux de neurones artificiels (ANN) pour la simulation des grandes échelles. Cette dernière est une approche de modélisation qui se concentre sur la résolution directe des grandes structures turbulentes, tout en modélisant les petites échelles par un modèle sous-maille. Elle requiert de résoudre un certain ratio de l’énergie cinétique totale. Néanmoins, ce ratio peut être difficilement atteignable pour des simulations industrielles en raison du fort coût de calcul, conduisant à des simulations sous-résolues. On souhaite améliorer ces dernières en orientant les travaux selon deux axes principaux : 1) Utiliser des ANN pour établir des modèles des modèles sous-mailles génériques qui surpassent les modèles analytiques et compensent la grossièreté de la discrétisation spatiale ; 2) Entraîner des ANN pour apprendre des modèles de paroi. L’un des principaux défis à relever est la capacité des nouveaux modèles à généraliser correctement dans des configurations différentes de celles utilisées lors de l'entraînement. Ainsi, la prise en compte des différentes sources et quantification des incertitudes joue un rôle vital dans l’amélioration de la fiabilité et de la robustesse des modèles issus de l'apprentissage machine.
Contrats HW/SW pour l’analyse de robustesse aux fautes de processeurs open-source
Cette thèse se concentre sur la cybersécurité des systèmes embarqués, en particulier sur la vulnérabilité des processeurs et des programmes face aux attaques par injection de fautes. Ces attaques perturbent le fonctionnement normal des systèmes, permettant aux attaquants d'exploiter des failles pour accéder à des informations sensibles. Bien que des méthodes formelles aient été développées pour analyser la robustesse des systèmes, elles se limitent souvent à des analyses séparées du matériel et des logiciels, négligeant l'interaction entre les deux.
Le travail proposé vise à formaliser des contrats entre le matériel et le logiciel (HW/SW) spécifiquement pour l'analyse de sécurité contre les injections de fautes. En s'appuyant sur une approche de partitionnement matériel, cette recherche cherche à atténuer les problèmes de scalabilité liés à la complexité des modèles de microarchitecture. Les résultats attendus incluent le développement de techniques et d'outils permettant une vérification efficace de la sécurité des systèmes embarqués, ainsi que la création de contrats qui faciliteront l'évaluation de la conformité des implémentations matérielles et logicielles. Cette approche pourrait également réduire le temps de mise sur le marché des systèmes sécurisés.
Sécurisation cryptographique d’enclaves de processeurs RISC-V avec CHERI
CHERI (Capability Hardware Enhanced RISC Instructions) est une solution permettant de sécuriser le processeur contre les fuites spatiales et temporelles de mémoire en transformant tout pointeur en capacité définissant de façon claire les bornes d’accès aux données ou instructions adressées.
Dans cette thèse, nous proposons sur un processeur d’applications RISC-V d’enrichir CHERI et ses possibilités d’intégrité de flot de contrôle avec une protection des instructions allant jusqu’à leur exécution contre tout type de modifications. Dans un second temps, sur la base d’un chiffrement authentifié de la mémoire, nous étudierons la possibilité avec CHERI de définir des enclaves sécurisées permettant une isolation cryptographique entre processus. Le processeur sera modifié pour que chaque processus soit chiffré avec sa propre clé et puisse avoir un cycle de vie sûr. L’ensemble des clés devra être protégé efficacement dans le matériel.
Contact : olivier.savry@cea.fr
Optimisation topologique des performances optiques de µLED
Les performances des micro-LEDs (µLEDs) sont fondamentales pour les micro-écrans, un domaine d’excellence du laboratoire LITE au CEA-LETI. Cependant, simuler ces composants est complexe et coûteux en calculs, en raison de la nature incohérente des sources lumineuses et des géométries impliquées. Cela limite la possibilité d’explorer efficacement des espaces de conception multi-paramètres.
Cette thèse propose de développer une méthode innovante basée sur les éléments finis pour accélérer les simulations tout en rendant possible l’utilisation de l’optimisation topologique. L’objectif est de produire des designs non intuitifs maximisant les performances tout en respectant les contraintes industrielles.
Le travail se divise en deux phases :
Développer une méthode de simulation rapide et fiable, en intégrant des approximations physiques adaptées aux sources incohérentes et en réduisant les temps de calcul d’un facteur significatif.
Concevoir un cadre d’optimisation topologique robuste, intégrant des contraintes de fabricabilité, pour générer des designs immédiatement réalisables.
Les résultats attendus incluent des designs optimisés pour micro-écrans offrant des performances accrues et une méthodologie généralisable à d'autres dispositifs photoniques.
Combinaison de sous et surapproximations de la memoire pour l'analyse de code bas-niveau
Le théorème de Rice énonçant qu'on ne peut pas avoir de méthode qui sache automatiquement dire si une propriété sur un programme est vraie ou non a conduit à séparer les outils de vérification en deux groupes: les outils sound fonctionnant par sur-approximation, comme l'interprétation abstraite, sont capables de prouver automatiquement que certaines propriétés sont vraies, mais ne savent parfois pas conclure et produisent des alarmes; à l'inverse, les outils complete fonctionnant par sous-approximation, comme l'exécution symbolique, savent produire des contre-exemples, mais pas démontrer si une propriété est vraie.
*Le but général de la thèse est d'étudier la combinaison entre méthodes sound et complete d'analyse de programme, et en particulier l'analyse statique par interprétation abstraite et la génération de formules sous-approximée par exécution symbolique*.
Nous nous intéresserons particulièrement à la combinaison d'abstractions sur et sous-approximantes, en particulier pour la mémoire. Les applications envisagées en priorité concernent les analyses de code au niveau binaire, telles que réalisées par la combinaison des plateformes d'analyse BINSEC et CODEX, pour pouvoir trouver des failles de securite automatiquement ou demontrer leur absence.
Etude et évaluation de capacités en technologie silicium pour applications dans la bolométrie infrarouge
Les microbolomètres constituent aujourd'hui la technologie dominante pour la réalisation de détecteurs thermiques infrarouges non refroidis. Ces détecteurs sont couramment utilisés dans les domaines de la thermographie et de la surveillance. Il est néanmoins attendu, pour les prochaines années, une explosion du marché des microbolomètres, avec notamment l'implantation de ces derniers dans les automobiles et la multiplication des objets connectés. Le CEA Leti Li2T, acteur reconnu dans le domaine des détecteurs thermiques infrarouges, transfère depuis plus de 20 ans les technologies successives de microbolomètres à l'industriel Lynred. Afin de rester compétitif dans ce contexte d'accroissement du marché des microbolomètres, le laboratoire travaille à des microbolomètres de rupture comportant des composants CMOS comme élément sensible. Dans cette optique, le laboratoire a engagé des études se focalisant sur des capacités en technologie silicium qui varient avec la température, avec des premiers résultats prometteurs non rapportés dans la littérature. Le sujet de thèse s'inscrit dans ce contexte et vise à démontrer l'intérêt de ces composants pour des applications microbolométriques. Il portera ainsi sur la modélisation analytique de ces composants et des effets physiques associés, ainsi que sur la lecture d'un tel composant dans une approche imageur microbolomètre. Une réflexion autour de l'intégration technologique sera également menée. L'étudiant bénéficiera de plusieurs lots technologiques déjà réalisés afin de caractériser expérimentalement les effets physiques et de prendre en main le sujet. L’étudiant aura à sa disposition l’ensemble des moyens de test du laboratoire (testeur paramétrique de semiconducteur, analyseur de bruit, banc optique, etc.) ainsi que les outils d’analyse pour une compréhension des phénomènes (Matlab/Python, simulations TCAD, simulations SPICE, Comsol, etc.). À l'issue de la thèse, l'étudiant sera en mesure de répondre à la question de l'intérêt de ces composants pour des applications microbolométriques.
Circulateurs cryogéniques à cryosorption à très basses températures : de la preuve de concept à la mise en œuvre
Le DSBT et particulièrement le laboratoire de cryocoolers et cryogénie spatiale est particulièrement impliqué dans la conception de composants cryogéniques de pointes fonctionnant à la température de l’hélium liquide. Il a notamment une grande expérience de la réfrigération par adsorption en fabricant des refroidisseurs à adsorption à 300 mK utilisé sur le satellite Herschel et sur des télescopes de pointe en Antarctique. Il a également une expérience importante en refroidissement magnétique et dans le refroidissement par dilution, permettant d’atteindre des températures sous les 100 mK. A ces températures, l’utilisation de pompe cryogénique, notamment pour la dilution est une technologie clef. L’utilisation d’adsorption a déjà été considérée par d’autres équipes et nous proposons d’étudier une mise en œuvre originale de cette technologie qui permettrait d’obtenir des variations de débits et pressions compatible avec les besoins à cette température.
Le travail de thèse proposé comportera une grande part expérimentale, avec la maîtrise des techniques cryogéniques à très basses températures, inférieure à la température de l’hélium liquide. Les aspects de mesures seront importants, débits, températures et pression. Le couplage avec des modèles physiques des phénomènes observés permettra de s’approprier le sujet, de proposer des configurations réalistes et de valider les résultats expérimentaux.
On attend du candidat qu’il acquiert la maîtrise des techniques cryogéniques et qu’il fasse preuve de créativité et de prise d’initiative pour s’approprier le sujet et être moteur dans son orientation.