Etude expérimentale des couches limites en convection turbulente par spectroscopie d'ondes multi-diffusées.
La convection turbulente est un des principaux moteurs des écoulements géophysiques et astrophysiques et est donc un élément clef de la modélisation du climat. Elle intervient aussi dans de nombreux écoulements industriels. L'efficacité du transport est souvent limitée par des couches limites dont la nature et les transitions en fonction des paramètres de contrôle sont mal connues.
Le but de cette thèse sera de mettre en place d’une expérience de convection pour sonder le taux de dissipation dans les couches limites dans le régime turbulent grâce à une technique innovante développée dans l’équipe : la spectroscopie d’ondes multi-diffusées.
Conception et fabrication de circuits neuromorphiques basés sur des dispositifs ioniques
Les réseaux de neurones (NN) sont inspirés des processus de calcul et de communication du cerveau afin de résoudre efficacement des tâches telles que l'analyse de données, le traitement adaptatif de signaux en temps réel, et la modélisation de systèmes biologiques. Cependant, les limitations matérielles constituent actuellement le principal obstacle à une adoption à grande échelle. Pour y remédier, un nouveau type d'architecture de circuit appelé "circuit neuromorphique" est en train d’émerger. Ces circuits imitent le comportement des neurones en intégrant un haut degré de parallélisme, une connectivité adaptable et un calcul en mémoire. Les transistors à base d'ions ont été récemment étudiés pour leur potentiel à fonctionner comme neurones et synapses artificiels. Bien que ces dispositifs émergents présentent d’excellentes propriétés en raison de leur très faible consommation d'énergie et de leurs capacités de commutation analogique, ils nécessitent encore une validation à l’échelle de systèmes plus larges.
Dans l'un des laboratoires du CEA-Leti, nous développons de nouveaux transistors à base de lithium en tant que brique de base pour déployer des réseaux de neurones artificiels à faible consommation d'énergie. Ces dispositifs doivent désormais être intégrés dans un système réel pour évaluer leur performance et leur potentiel. En particulier, des circuits bio-inspirés et des architectures en barre croisée pour le calcul accéléré seront ciblés.
Au cours de cette thèse, votre objectif principal sera de concevoir, implémenter et tester des réseaux de neurones basés sur des matrices de transistors à base de lithium (~20x20) et des circuits neuromorphiques, ainsi que la logique CMOS de lecture et d’écriture pour les contrôler. Les réseaux pourront être implémentés en utilisant différents algorithmes et architectures, y compris les réseaux de neurones artificiels, les réseaux de neurones impulsionnels et les réseaux de neurones récurrents, qui seront testés pour résoudre des problèmes de reconnaissance de motifs spatiaux et/ou temporels et pour reproduire des fonctions biologiques telles que le conditionnement pavlovien.
Blockchain locale embarquée sur dispositifs physiques sécurisés
La blockchain repose sur un protocole de consensus qui a pour objectif de partager et répliquer des données ordonnancées entre les pairs d’un réseau distribué. La pile protocolaire, embarquée dans les dispositifs pairs du réseau, s’appuie sur un mécanisme de preuve qui atteste l’horodatage et permet une certaine équité au sein du réseau.
Les protocoles de consensus utilisés dans les blockchains déployées aujourd’hui ne sont pas adaptés pour l’embarqué, car ils requièrent trop de ressources de communication et/ou de calcul pour la preuve. Quelques travaux de recherche, comme IOTA ou HashGraph, traitent de ce sujet et pourront être analysés dans l’état de l’art.
La problématique de la thèse est de construire un protocole de consensus, frugal en communications et en ressources de calcul, dont la pile protocolaire sera implémentée dans un dispositif embarqué sécurisé. Ce protocole devra s’appuyer sur une preuve de temps écoulée issue de travaux de notre laboratoire, également frugale, appelée Proof-of-Hardware-Time (PoHT) et satisfaire les propriétés de finalité et d’équité. L’architecture complète d’un nœud pair du réseau sera conçue et embarquée sur une carte électronique de type microprocesseur intégrant plusieurs composants de sécurité matérielle, de telle sorte que la ressource de preuve ne soit pas parallélisable. La communication entre les pairs sera établie de façon distribuée.
Etudes avancées de la Représentation Sémantique, de l'Alignement et du Raisonnement dans les Systèmes de Communication Multi-Agents pour les Réseaux 6G
Les communications sémantiques représentent un domaine de recherche émergent et transformateur, où l'objectif se déplace de la transmission de simples données brutes à celle d'informations significatives. Bien que les premiers modèles et solutions de conception aient établi des principes fondamentaux, ils reposent souvent sur des hypothèses fortes concernant l'extraction, la représentation et l'interprétation du contenu sémantique. L'arrivée des réseaux 6G introduit de nouveaux défis, en particulier avec le besoin croissant de systèmes multi-agents où plusieurs agents pilotés par l'intelligence artificielle (IA) interagissent de manière fluide.
Dans ce contexte, le défi de l'alignement sémantique devient crucial. La littérature existante sur les communications sémantiques multi-agents suppose fréquemment que tous les agents partagent un cadre d'interprétation et de compréhension commun, ce qui est rarement le cas dans des scénarios pratiques. Des représentations mal alignées peuvent entraîner des inefficacités de communication, une perte d'informations critiques et des malentendus.
Cette recherche doctorale vise à faire progresser l'état de l'art en explorant les principes de représentation sémantique, d'alignement et de raisonnement dans des environnements multi-agents IA au sein des réseaux de communication 6G. L'étude examinera comment les agents peuvent aligner dynamiquement leurs modèles sémantiques, garantissant une interprétation cohérente des messages tout en tenant compte des différences de contexte, d'objectifs et de connaissances préalables. En s'appuyant sur des techniques issues de l'intelligence artificielle, telles que l'apprentissage automatique, l'alignement d'ontologies et le raisonnement multi-agents, l'objectif est de proposer des cadres novateurs qui améliorent l'efficacité et l'efficience des communications dans des environnements multi-agents. Ce travail contribuera à des systèmes de communication plus adaptatifs, intelligents et sensibles au contexte, essentiels à l'évolution des réseaux 6G.
Développement d’une nuance avancée d’acier austénitique nano-renforcé pour utilisation sous flux intense
Les travaux récents ont montré qu’il était possible d’obtenir des aciers austénitiques ODS (Oxide Dispersion Strengthened – renforcés par dispersion d’oxydes) pour une utilisation sous flux intense. Ces nouvelles nuances commencent à être étudiées pour le nucléaire à travers le monde. Elles devraient présenter des propriétés remarquables, notamment en termes de résistance au gonflement sous irradiation et au fluage, grâce à l’ajout de nano-renforts en densité exceptionnelle (10^23 à 10^24 m-3). Ces aciers ODS sont obtenus par métallurgie des poudres, par co-broyage d’une poudre métallique avec une poudre d’oxyde.
Le but de ce travail est de réussir à fabriquer, grâce à un procédé innovant, des tubes de gainage en acier austénitique ODS. Il conviendra de maitriser la recristallisation de ces tubes, de proposer une première évaluation critique en précisant les relations propriétés/microstructures et en évaluant, par des irradiations aux particules chargées, le comportement sous flux de ce nouveau matériau.
L’étudiant sera formé à la Microscopie Electronique à Balayage et aux techniques qui en découlent (analyse X, EBSD …), à la diffusion centrale, à la réalisation et l’exploitation d’essais mécaniques. Il devra acquérir de bonnes notions en Microscopie Electronique à Transmission et en Sonde Atomique Tomographique. La compréhension du comportement sous irradiation sera guidée par des simulations par dynamique d’amas.
Etude et simulation des entraînements de phase dans les batteries de mélangeurs-décanteurs
Dans le cadre du développement de nouveaux procédés de séparation par extraction liquide-liquide, des essais expérimentaux sont mis en œuvre afin de démontrer la récupération des éléments valorisables suffisamment décontaminés des impuretés. Ces essais sont couramment réalisés en batteries de mélangeurs décanteurs. Cependant, en fonction des conditions opératoires, ces produits finis peuvent être contaminés par des impuretés. Cette contamination résulte de la combinaison de plusieurs facteurs :
-Hydrodynamique : Entrainement dans le solvant de gouttes aqueuses non décantées contenant des impuretés
-Chimique : le facteur de séparation des impuretés est faible (inférieur à 10-3)
-Procédé : l’entrainement des gouttes est amplifié avec l’augmentation de la cadence (réduction du temps de séjour des gouttes)
Cette thèse a pour but d’accroitre la compréhension des différents phénomènes responsables de ces entraînements de phase afin d’estimer des paramètres opératoires optimaux et de garantir une contamination des produits finis inférieure à un seuil fixé.
Il sera question de mettre au point un modèle macroscopique permettant de prédire le débit d’entrainement de gouttes non décantées en fonction des conditions opératoires dans les batteries de mélangeurs décanteurs. Il devra s’appuyer sur des simulations hydrodynamiques couplant la résolution d’un bilan de population de gouttes à un écoulement de phase continue. Un couplage sera réalisé entre ce modèle hydrodynamique et le code PAREX ou PAREX+ permettant de dimensionner les schémas de procédé.
La qualification des modèles proposés devra être faite par des comparaisons à des mesures expérimentales (basées sur des compagnes d’essai antérieures ou à venir).
Amélioration de la sécurité des communications grâce à la conception d'émetteurs-récepteurs plus rapides que Nyquist
Face à la demande croissante en capacité de transmission des réseaux de communication, il est essentiel d'explorer des techniques innovantes qui augmentent l'efficacité spectrale tout en maintenant la fiabilité et la sécurité des liens de transmission. Ce projet propose une modélisation théorique approfondie des systèmes Faster-Than-Nyquist (FTN) accompagnée de simulations et d'analyses numériques afin d’évaluer leurs performances dans différents scénarios de communication. L'étude s'efforcera d'identifier les compromis nécessaires pour maximiser le débit de transmission, tout en tenant compte des contraintes liées à la complexité de mise en œuvre et à la sécurité des transmissions, un enjeu crucial dans un environnement de plus en plus vulnérable aux cybermenaces. Ce travail permettra d’identifier les opportunités d'augmentation de capacité, tout en mettant en évidence les défis technologiques et les ajustements indispensables à une adoption généralisée de ces systèmes pour des liaisons critiques et sécurisées.
Influence du dopage au chrome du combustible UO2 sur la spéciation des produits de fission en conditions accidentelles
Le développement des réacteurs nucléaires s’inscrit dans une démarche d’amélioration de la sûreté, avec par exemple le déploiement de combustibles nucléaires à propriétés améliorées vis-à-vis de leur comportement en conditions accidentelles : les combustibles nucléaires dits E-ATF (Enhanced Accident Tolerant Fuel). Parmi les combustibles E-ATF envisagés, le combustible UO2 dopé avec Cr2O3 est développé par l’opérateur industriel FRAMATOME. En revanche, très peu de données existent sur le comportement des produits de fission d’un combustible dopé Cr en conditions accidentelles.
La thèse propose de mettre au point un procédé de synthèse d’un combustible UO2 dopé Cr simulant le combustible irradié pour étudier le comportement des éléments (Cr et produits de fission) en température et sous différentes pressions partielles d’oxygène. La méthodologie repose sur une approche expérimentale couplant synthèse de matériaux modèles et caractérisation chimique approfondie, complétée par une approche théorique (calculs thermodynamiques) permettant de dimensionner les séquences thermiques et conforter les mécanismes réactionnels proposés.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
Le doctorant aura l’opportunité de se former à des techniques pointues de caractérisation des sciences des matériaux céramiques, d’accéder à des expériences sur grands instruments (synchrotron) et de participer à des échanges avec le monde académique (CNRS, Universités, JRC). Il pourra valoriser ses travaux à travers des publications et des participations à congrès.
A l’issue de cette thèse, le doctorant aura acquis des compétences en science des matériaux et en caractérisation du solide qu’il pourra mettre à profit dans différents domaines des matériaux, ainsi qu’une expérience dans le milieu nucléaire d’intérêt pour l’industrie nucléaire.
Etude phénoménologique des effets couplés iode/oxygène sur la Corrosion Sous Contrainte induite par l’Iode (CSC-I) des alliages de zirconium
Le cœur des Réacteurs à Eau Pressurisée (REP) des centrales nucléaires est constitué d’assemblages combustibles, dont la gaine, première barrière de confinement du combustible, fait partie. L’Interaction Pastille-Gaine (IPG) consiste en une variation de puissance locale qui se traduit par la dilatation des pastilles combustibles qui imposent une déformation à la gaine. Le couplage du chargement mécanique imposé à la gaine et de l’environnement agressif, dû notamment à la présence d’iode issu de la réaction de fission, engendre un risque de fissuration de la gaine par Corrosion Sous Contrainte par l’Iode (CSC-I).
L’environnement chimique REP est à l’étude au Département d’Etude du Combustible (DEC). Il apparaît que les interactions entre la gaine et son environnement chimique REP résultent d’une compétition entre le zirconium, des gaz corrosifs tels que l’iode (I), l’iodure de tellure (TeI2) et l’oxygène (O2).
Ce sujet de thèse s’inscrit dans une démarche d’étude expérimentale de la CSC-I, dans des conditions mécaniques et chimiques aussi proches que possible des conditions vues par la gaine en REP.
Le travail de thèse s’articulera autour de trois axes principaux. Le premier axe permettra d’étudier l’influence de la contrainte, en fonction de la pO2 et de la pI2 sur la sensibilité à la CSC-I d’éprouvettes en alliage de zirconium. Les essais seront réalisés à l’aide des dispositifs d’essais existants au laboratoire (traction sur C-RING en iode vapeur, essais de pression interne en iode vapeur). Ce point sera accompagné de la modélisation de la CSC-I des alliages de zirconium. Le deuxième axe principal permettra d’étudier l’effet de la température sur la CSC-I à l’aide de ces mêmes dispositifs d’essais. Enfin, le troisième axe devrait permettre d’étudier l’effet sur la CSC-I, d’une zircone épaisse (de quelques microns d’épaisseur) située en paroi interne de gaine.
Développement d’un jumeau numérique d’un équipement industriel : couplage chimie / thermo-hydraulique / corrosion
Ce sujet de thèse s’inscrit dans le cadre de la R&D CEA visant à développer et améliorer les technologies décarbonées pour la production d’énergie, en réponse aux enjeux climatiques. Plus précisément, il s’intègre dans l’étape de traitement-recyclage du combustible utilisé dans les réacteurs nucléaires actuels. La simulation du fonctionnement et du vieillissement de ces équipements est un enjeu majeur pour la pérennisation des activités des usines de traitement-recyclage.
L’objectif de la thèse est de répondre à ces enjeux, en développant une modélisation de la corrosion d’un équipement ou plusieurs équipements des usines en se basant sur leur fonctionnement. Cela nécessitera de coupler des modèles de réactions chimiques (en solution et de corrosion) avec des modèles de thermo-hydraulique. Ces développements seront réalisés à l’aide d’outils de modélisation développés par le CEA.
En permettant de simuler la corrosion de l’équipement, le développement d’un tel modèle permettra d’optimiser sa durée de vie (en cherchant à optimiser son fonctionnement, par exemple) ou d’estimer avec précision (et donc d’anticiper) le moment nécessaire à son remplacement.