Méthodologie de déploiement d'une flotte de réacteurs nucléaires innovants pilotée par les besoins et contraintes du réseau
Les réseaux électriques sont à une société ce que le système sanguin est au corps humain : les pourvoyeurs d’énergie électrique indispensable à la vie quotidienne de tous les organes de la société. Il s’agit de systèmes très complexes qui doivent garantir à tout instant l’équilibre entre la demande des consommateurs et la puissance injectée sur ses lignes via des mécanismes à des échelles spatiales et temporelles différentes.
Cette thèse vise à élaborer une méthodologie d’optimisation du déploiement de réacteurs nucléaires innovants dans des réseaux électriques, adaptée aux besoins et contraintes spécifiques de ceux-ci. Cette approche devra être applicable à une grande variété de réseaux, qu'ils soient insulaires ou de taille continentale, et à divers niveaux de pénétration et technologies d’Energies Renouvelables Intermittentes (EnRI). Les contraintes des réseaux devront traduire leurs besoins en stabilité à court terme (localisation et capacités des réserves inertielles, participation aux services systèmes), à moyen terme (pilotabilité et suivi de charge), ainsi qu’à long terme (disponibilité saisonnière et facteur de charge des moyens de production). Les réacteurs nucléaires innovants pourront appartenir à n’importe quelle filière, étant caractérisés uniquement par des grandeurs macroscopiques telles que la cinétique de montée/descente en charge, les paliers de puissance partielle, la durée avant redémarrage, les capacités de cogénération, etc. ainsi que des données technico-économiques requises pour le dispatching. Concrètement, l’objectif est de pouvoir dresser le portrait-robot (ie. localisation, puissance, cinétique) de flottes de réacteurs nucléaires garantissant un fonctionnement stabilisé des réseaux électriques malgré un fort taux de pénétration d’EnRI. Deux contributions principales sont attendues :
- Apport académique : proposer une méthodologie novatrice pour optimiser le déploiement de systèmes énergétiques de grande dimension comprenant des réacteurs nucléaires innovants, en intégrant à la fois la physique des réseaux électriques et leurs contraintes opérationnelles ;
- Apport industriel : développer des recommandations pour le déploiement optimal de réacteurs nucléaires innovants dans des systèmes électriques intégrant des EnRI, prenant en compte des aspects comme la puissance des réacteurs et leur inertie, leur localisation, les besoins en réserves pour les services systèmes, leur capacité de suivi de charge ou leur disponibilité.
Le doctorant sera basé dans une unité de recherche sur les systèmes nucléaires innovants. À l'intersection de l’étude de la dynamique des réacteurs nucléaires, de la physique des réseaux électriques, et de l'optimisation, cette thèse en énergétique offrira au doctorant l'opportunité de développer une connaissance approfondie sur les systèmes énergétiques de demain et les enjeux qui leur sont associés.
Développement d’une méthode de propagation d’incertitudes de type fonctionnel sur la puissance résiduelle
La puissance résiduelle est l’énergie dégagée par la désintégration des radionucléides présents dans le cœur d’un réacteur à l’arrêt. Une connaissance précise de sa valeur moyenne et de sa plage de variations revêt un aspect important pour le design et la sûreté des systèmes de transport et d’entreposage du combustible. Ces informations ne pouvant être mesurées de manière exhaustive, on utilise des outils de simulation numérique pour estimer la valeur nominale de la puissance résiduelle et quantifier ses variations dues aux incertitudes sur les données nucléaires.
Dans cette thèse, on se propose de quantifier les variations de la puissance résiduelle induite par les données de fonctionnement du réacteur, notamment les historiques de puissance, soit la puissance instantanée des assemblages de combustible lors de leur séjour en cœur. Ce travail revêt un challenge particulier puisque les données d’entrée ici ne sont plus des grandeurs scalaires mais des fonctions dépendant du temps. Pour cela, un modèle de substitution de l’outil de calcul scientifique sera développé afin de réduire le temps de calcul. La modélisation globale du problème sera réalisée dans un cadre bayésien à l’aide d’approches de réduction de modèle associées à des méthodes multifidélité. L’inférence bayésienne permettra in fine de résoudre un problème inverse pour quantifier les incertitudes induites par les historiques de puissance.
Le doctorant intègrera l’équipe du Laboratoire des Projets Nucléaires de l’institut IRESNE du CEA Cadarache. Il développera des compétences en simulation neutronique, science des données et réacteurs nucléaires. Il sera amené à présenter ses travaux périodiquement et les publiera dans des revues à comité de lecture.
Epitaxie sélective basse température du SiGe(:B) pour les transistors pMOS FD-SOI
Dans le cadre de l’évolution des technologies silicium pour la microélectronique, les procédés mis en jeu dans la fabrication des dispositifs se doivent d'être optimisés. Plus précisément, l'épitaxie, technique de croissance cristalline, est utilisée pour fabriquer des transistors FD-SOI (Fully Depleted-Silicon On Insulator) au nœud technologique 10 nm dans le cadre du projet NextGen au CEA-Leti. Une épitaxie de semi-conducteurs de type Si et SiGe dopée ou non est développée afin d’améliorer les performances électriques des dispositifs. Le travail de thèse portera sur les épitaxies sélectives du SiGe(:B) pour les canaux et les sources/drains des transistors pMOS. Une comparaison des cinétiques de croissances du SiGe et du SiGe:B sera faite entre les croissances sous gaz porteur H2, couramment employé et le gaz porteur N2. Des stratégies innovantes de dépôt/gravure cyclées (CDE) seront également évaluées, l’objectif étant d’abaisser la température du procédé.
Influence de la synthèse sur la modélisation des mécanismes de stockage du sodium dans le carbone dur
Les batteries sodium-ion (Na-ion) suscitent un intérêt considérable en tant qu'alternative crédible aux batteries lithium-ion largement utilisées aujourd'hui. L'abondance du sodium, ainsi que l'utilisation potentielle de matériaux d'électrode sans éléments critiques dans leur composition, ont conduit à l'intensification de la recherche sur les batteries Na-ion. Le carbone dur (HC) est identifié comme l'électrode négative la plus appropriée pour cette technologie. Il n’existe toutefois pas de consensus concernant les mécanismes de stockage du sodium dans le HC, parce que les multiples précurseurs et méthodes de synthèse conduisent à des HC singulièrement différents qui ne fonctionnent évidemment pas de la même façon. Une grande base de données fournit des relations entre les paramètres de synthèse (précurseur, lavage, prétraitement, pyrolyse, broyage) et les propriétés du HC (porosité, structure, morphologie, chimie de surface, défauts), mais elle n’explique pas ces relations. Par conséquent, l'approche envisagée dans cette thèse est une modélisation multiphysique des performances du HC permettant de comprendre l'influence du précurseur et de la méthode de synthèse, en exploitant la grande base de données de caractérisation existante.
Génération de micro-particules de césium silicaté de Fukushima
Microscopiques de par leur taille, mais grandes de par leur impact environnemental, les microparticules de césium détiennent une des clés de la compréhension de l’accident nucléaire de Fukushima. Suite à l'accident de Fukushima Daiichi, ces microparticules de verre silicaté riches en césium (MSC) ont été découvertes dans l'environnement, portant une part significative de la radioactivité. Très peu solubles dans l'eau, elles diffèrent de celles observées à Tchernobyl. Une thèse précédente a démontré que ces MSC pourraient être issues de l'interaction entre le corium et le béton lors d'un accident grave, via des expériences à petite échelle. L'étude a permis de reproduire des particules similaires, constituées de silice amorphe avec des nano-inclusions cristallines. Toutefois, les résultats doivent être affinés, notamment en ce qui concerne la présence de zinc et de calcium. La thèse proposée vise à explorer les mécanismes physico-chimiques menant à la synthèse de ces MSC. Des expériences en laboratoire recréeront les conditions d'interaction corium-béton, représentatives de Fukushima, afin d'optimiser les compositions et d'améliorer la modélisation des relâchements de ces particules dans les outils actuels d'évaluation des accidents graves.
Développement d’une approche de corrélation d’images multiéchelle et multivue pour le suivi d’essais dynamiques à grande-échelle
Les données expérimentales obtenues sur des spécimens à grande échelle jouent un rôle important pour l’étude de l’intégrité des structures. Les interprétations fines de ces essais nécessitent une instrumentation poussée des maquettes. En plus des systèmes d'acquisition de données classiques, les techniques de corrélation d'images numériques (CIN) permettent de mesurer les champs de déplacement et d'extraire des quantités d'intérêt (par exemple, champ d’endommagement). L’objectif de cette thèse est de développer une technique de corrélation d’images numériques multivue et multiéchelle (CI2M) pour le suivi des essais dynamique à grande-échelle. Nous nous concentrerons sur le comportement des structures en béton armé soumises à des chargements dynamiques. La technique de recalage de modèles par éléments finis (FEMU) sera utilisée pour identifier les phénomènes non linéaires dans la zone de process autour des fissures. La FEMU sera couplée aux analyses de CI2M, ce qui permet également de mesurer les conditions aux limites. L'utilisation des techniques de CI pour calculer les champs d'accélération sera également étudiée. Un cadre numérique sera proposé pour effectuer une analyse modale basée sur des champs calculés. A terme, ces outils pourront être intégrés dans une procédure de dialogue essais / calculs en apportant des information précises sur les propriétés mécaniques des éléments structuraux et leur évolution (p.ex., endommagement) induite par des chargements sismiques.
Modélisation du flux critique à l’aide des méthodes de Boltzmann sur réseau : application aux dispositifs expérimentaux du RJH
Les méthodes LBM (Lattice Boltzmann Methods) sont des techniques numériques utilisées pour simuler des phénomènes de transport dans des systèmes complexes. Elles permettent de modéliser le comportement des fluides en termes de particules qui se déplacent sur une grille discrète (un "réseau" ou lattice). Contrairement aux méthodes classiques, qui résolvent directement les équations différentielles des fluides, les méthodes LBM simulent l'évolution des fonctions de distribution des particules de fluide dans un espace discret, en utilisant des règles de propagation et de collision.
Le choix du réseau dans les méthodes LBM est une étape cruciale, car il affecte directement la précision, l'efficacité et la stabilité des simulations. Le réseau détermine la manière dont les particules de fluide interagiront et se déplaceront dans l'espace, ainsi que la façon dont la discrétisation de l'espace et du temps est effectuée.
Les méthodes LBM présentent un parallélisme naturel, car les calculs à chaque point de la grille sont relativement indépendants. Bien que les méthodes classiques de CFD, basées sur la résolution des équations de Navier-Stokes, puissent aussi être parallélisées, les termes non linéaires peuvent rendre le parallélisme plus difficile à gérer, en particulier pour les modèles impliquant des écoulements turbulents ou des maillages irréguliers. Les méthodes LBM permettent donc, à moindre coût, de capturer des phénomènes complexes. Des travaux récents ont notamment montré qu'il était possible, avec les LBM, de retrouver la courbe de refroidissement de Nukiyama (ébullition en vase) et, ainsi, de calculer avec précision le flux critique. Ce flux correspond à une ébullition en masse, appelée crise d’ébullition, qui se traduit par une dégradation soudaine du transfert thermique.
Le flux critique représente un enjeu crucial pour le Réacteur Jules Horowitz, car les dispositifs expérimentaux (DEX) sont refroidis par de l'eau en convection naturelle ou forcée. Ainsi, afin de garantir le bon refroidissement des DEX et la sûreté du réacteur, il convient de s'assurer que, sur la gamme de paramètres étudiés, le flux critique ne soit pas atteint. Il doit donc être déterminé avec précision.
L'étudiant sera amené, dans un premier temps, à définir un réseau pour appliquer les méthodes LBM sur un dispositif du RJH en convection naturelle. Il consolidera les résultats obtenus en les comparant aux données disponibles. Enfin, des calculs exploratoires en convection forcée (régime laminaire à turbulent) seront menés.
Implémentation d’algorithmes parallèles sur GPU pour les simulations du combustible nucléaire sur supercalculateurs exaflopiques
Dans un contexte où le calcul haute performance (HPC) est en perpétuelle évolution, le design des nouveaux supercalculateurs tend à intégrer toujours plus d’accélérateurs ou de cartes graphiques (GPUs), qui fournissent l’essentiel de la puissance de calcul de la plupart des supercalculateurs actuels. En raison de leurs différences architecturales par rapport aux unités centrales de calcul (CPUs) et des environnements logiciels en constante évolution, les GPUs posent de profonds défis de programmation. Une utilisation efficace de leur puissance de calcul demande une refonte des algorithmes et logiciels de simulation existants pour atteindre un parallélisme massif.
Le CEA a développé la plateforme de calcul PLEIADES dédiée à la simulation du comportement des combustibles, depuis la fabrication jusqu’au comportement en réacteur, puis lors du stockage. Elle inclut une parallélisation en mémoire distribuée MPI permettant une parallélisation sur plusieurs centaines de cœurs. Cette plateforme répond aux exigences des partenaires du CEA que sont EDF et Framatome, mais il est nécessaire de l’adapter pour les nouvelles infrastructures de calcul. Proposer une solution flexible, portable et performante pour les simulations sur des supercalculateurs équipés de GPUs est d'un intérêt majeur afin de capturer des physiques toujours plus complexes sur des simulations comportant des domaines de calcul toujours plus grands.
Dans ce cadre, la thèse visera d’élaborer puis évaluer différentes stratégies de portage de noyaux de calculs sur GPU ainsi que l’utilisation de méthodes de répartition dynamique de la charge adaptés aux supercalculateurs GPUs actuels et futurs. Le candidat s’appuiera sur des outils développés au CEA comme les solveurs thermo-mécaniques MFEM-MGIS [1,2] ou MANTA [3]. Les solutions logicielles et algorithmes parallèles proposés avec cette thèse permettront à terme la réalisation de grands calculs de modélisation multi-physique en 3D du comportement des crayons combustibles sur des supercalculateurs comportant des milliers de cœurs de calcul et des GPUs.
Le candidat travaillera au sein du Laboratoire de développement des Outils de Calcul Scientifique (OCS) combustibles PLEIADES (LDOP) au département d'études des combustibles (DEC - Institut IRESNE, CEA Cadarache). Il sera amené à évoluer dans une équipe pluridisciplinaire composée de mathématiciens, physiciens, mécaniciens et informaticiens. A terme, les contributions de la thèse visent à enrichir la plate-forme numérique pour la simulation de combustibles nucléaires PLEIADES.
Références : [1] MFEM-MGIS - https://thelfer.github.io/mfem-mgis/; [2] Th. Helfer, G. Latu. « MFEM-MGIS-MFRONT, a HPC mini-application targeting nonlinear thermo-mechanical simulations of nuclear fuels at mesoscale ». IAEA Technical Meeting on the Development and Application of Open-Source Modelling and Simulation Tools for Nuclear Reactors, June 2022, https://conferences.iaea.org/event/247/contributions/20551/attachments/10969/16119/Abstract_Latu.docx, https://conferences.iaea.org/event/247/contributions/20551/attachments/10969/19938/Latu_G_ONCORE.pdf; [3] O. Jamond et al. «MANTA : un code HPC généraliste pour la simulation de problèmes complexes en mécanique », https://hal.science/hal-03688160
Matériaux ALD pour les capacitances ferroélectriques FE et antiferroelectriques AFE
Les matériaux HfO2 ultrafins sont des candidats prometteurs pour les mémoires non volatiles embarquées (eNVM) et les dispositifs logiques. Le CEA-LETI occupe une position de leader dans le domaine des mémoires BEOL-FeRAM ultra-basse consommation (<100fj/bit) à basse tension (<1V). Les développements envisagés dans cette thèse visent à évaluer l'impact des couches ferroélectriques FE et antiferroélectriques AFE à base de HfO2 (10 à 4 nm fabriquées par dépôt de couches atomiques ALD) sur les propriétés et les performances des FeRAM.
En particulier, le sujet se propose d’apporter une compréhension approfondie des phases cristallographiques régissant les propriétés FE/AFE en utilisant des techniques de mesures avancées offertes par la plateforme de nano-caractérisation du CEA-LETI (analyses physico-chimiques, structurales et microscopiques, mesures électriques). Plusieurs solutions d'intégration pour les capacités ferroélectriques FeCAPs utilisant des couches ALD FE/AFE seront étudiées, notamment le dopage, les couches d'interface, la fabrication séquentielle avec ou sans air break…
Les capacitances FeCAPs, dont l’empilement de base est exclusivement fabriqué par ALD, seront exploitées pour explorer les points suivants :
1-Incorporation de dopage dans les couches FE/AFE (La, Y…)
2-Ingénierie de l'interface entre les couches FE/AFE et l'électrode supérieure/inférieure
3-Traitement plasma in situ de la surface de l'électrode inférieure
4-Dépôt séquentiel avec et sans air break
[1] S. Martin et al. – IEDM 2024
[2] Appl. Phys. Lett. 124, 243508 (2024)
Essais thermomécaniques jusqu’à de hautes températures sur une céramique nucléaire irradiée
Ces travaux de thèse s’inscrivent dans le cadre des études sur les interactions pastille-gaine dans les crayons combustibles utilisés dans les réacteurs des centrales nucléaires à eau pressurisé. L’exploitant doit assurer et démontrer l’intégrité de l’ensemble des crayons, en toutes situations. Or, les contraintes mécaniques subies par la gaine, première barrière de sûreté, sont reliés aux propriétés viscoplastiques du combustible. Il faut donc connaître ces propriétés et leurs évolutions en fonctionnement.
Le sujet de thèse proposé s’intéresse particulièrement à la caractérisation en cellule de haute activité de combustibles irradiés en réacteur nucléaire. Une des difficultés majeures réside dans le fait que les combustibles issus d’une irradiation en réacteur sont multi-fissurés, ce qui rend leurs caractérisations mécaniques particulièrement compliquées. Toutefois, une thèse en cours (2022-25) a permis de (i) concevoir une machine spécifique d’essais thermomécaniques, (ii) qualifier en partie ce dispositif, (iii) mettre en place des outils et méthode d’extraction d’échantillon fissuré, (iv) ainsi qu’une modélisation intégrale du système (jumeau numérique).
La thèse proposée ici correspond à la suite de ces travaux et sera construite en quatre étapes sur trois plateformes expérimentales disponibles au CEA
1. Prise en main et amélioration des outils numériques et expérimentaux existant,
2. Implémentation du dispositif en cellule de haute activité sur un four existant,
3. Réalisation d’essai thermomécanique sur combustible irradié ; ce qui constituera en soi une première mondiale dans ces conditions.
Les essais demanderont des post-traitements dédiés basés sur une discussion essai-simulation. En premier lieu, cela permettra de décolérer les phénomènes et de se focaliser sur le comportement viscoplastique du matériau. Une fois la base expérimentale suffisamment étoffée et interprétée, il sera alors possible de conforter ou revoir les lois de comportement du combustible. Un lien avec la microstructure des matériaux pourrait être abordé.
Tout au long de ces étapes, le thésard s’appuiera sur les compétences et expertises de différents laboratoires du Département d'études des Combustible (Institut IRESNE, CEA Cadarache) et sur un environnement collaboratif académique. Cette thèse s'inscrit également dans le cadre du projet européen OPERA HPC et en est un enjeu majeur.
Le doctorant devra présenter un goût marqué pour l’approche expérimentale et quelques facilités pour l’utilisation d’outils numériques. Des connaissances en science des matériaux sont le minimum requis. Au long des trois années de doctorat, le doctorant améliorera ses compétences multiphysiques en conception de dispositifs expérimentaux et comportement des matériaux à haute température, ainsi qu’en simulation numérique, ce qui facilitera son insertion professionnelle. Au regard de l’ampleur de la tâche, il serait préférable, mais non obligatoire, que le candidat ait suivi préalablement le stage de master lié à ce sujet (voir par ailleurs).