Etude des transitions de régime d’écoulement en post-assèchement

Les écoulements diphasiques interviennent dans de nombreux systèmes fluides, notamment pour le refroidissement des réacteurs nucléaires. Selon le flux thermique échangé dans le cœur du réacteur, le débit, la sous-saturation ou la pression, on peut constater des écoulements purement monophasiques, des écoulements à bulles ou annulaires (avec un film liquide au contact de la paroi et un cœur de vapeur).
Lors d’un accident de perte de réfrigérant primaire, le cœur du réacteur qui contient les crayons combustibles s’échauffe jusqu’à la crise d’ébullition lorsque le flux thermique est suffisamment important. Une illustration des régimes d’écoulements diphasiques lors de cet accident est présenté en figure 1. Un film de vapeur se forme rapidement et isole thermiquement les crayons, tandis que du liquide subsiste dans le cœur de l’écoulement. Les crayons du cœur sont asséchés, leur surface n’est refroidie que par de la vapeur et l’échange thermique à la paroi est ainsi dégradé [1]. Cet écoulement est du type "inverted annular film boiling". Au fur et à mesure que le liquide se vaporise, le film de vapeur s’épaissit et la turbulence induite aura tendance former des vagues a l’interface liquide-vapeur et à déstabiliser l’interface jusqu’à la formation de poches de liquides (inverted slug film boiling). Puis, l’évaporation et la fragmentation de ces poches vont mener à la formation d’un écoulement dispersé à gouttes (dispersed film boiling).

Actuellement, les transitions de régime d’écoulement dans cette configuration sont très mal identifiées [1], [2] bien que la connaissance de celles-ci soit importante pour l’étude de refroidissement du cœur du réacteur nucléaire. Une des principales difficultés expérimentales réside dans la nécessité de chauffer fortement les parois pour établir un film de vapeur et maintenir celui-ci, rendant de ce fait les sections d’essai opaques. Il est donc particulièrement complexe d’accéder à une visualisation directe et plus encore à des mesures de paramètres locaux comme les champs de températures et vitesses fluides. Les résultats expérimentaux disponibles dans la littérature sur ce sujet sont donc très limités et insuffisants pour développer un modèle physique [1], [3], [4], [5].
Cette thèse, qui constitue une première étape vers l’identification précise des transitions de régime, porte sur l’étude de l’effet purement hydrodynamique, en couplant des approches expérimentale et analytique. Afin d’obtenir une compréhension de la physique des différents phénomènes, la configuration d’un écoulement de liquide au cœur d’un écoulement gazeux est proposée. Dans celle-ci, la déformation de l’interface, la vitesse du gaz et la vitesse du liquide peuvent jouer sur la transition d’un régime à l’autre [6], [7] : l’interface lisse devient perturbée par des vagues (instabilités de Kelvin-Helmholtz), des gouttes sont arrachées de l’interface. Une analyse paramétrique sera effectuée en faisant varier les débits liquides et gazeux et ainsi l’épaisseur du film gazeux pour observer ces différents phénomènes et comprendre les effets de chaque paramètre sur les transitions de régimes. Expérimentalement, un banc a récemment été conçu au DM2S/STMF/LE2H afin d’étudier plus particulièrement ces transitions grâce à une visualisation des déformations de l’interface. Des adaptations pourront être apportées avec de nouvelles mesures ou éventuellement une nouvelle méthodologie si nécessaire.
A partir des résultats expérimentaux, il sera nécessaire d’identifier, voire de définir, les nombres adimensionnels pertinents pour décrire les phénomènes observés. L’analyse portera ensuite sur la caractérisation des transitions de régimes sur la base de ces nombres adimensionnels, afin de proposer une carte des transitions de régimes d’écoulements.
La combinaison des résultats obtenus permettra de renforcer les modèles utilisés dans les codes de calcul comme le code de thermohydraulique CATHARE, développé au CEA en particulier pour les études de sureté des réacteurs nucléaires. Cette thèse présente donc un fort intérêt académique par l’exploitation d’une installation expérimentale innovante et la production de résultats nouveaux qui confirmeront également son intérêt sur le plan industriel pour l’amélioration de la connaissance des phénomènes importants dans la démonstration de sûreté des réacteurs nucléaires.

Références :
[1] M. Ishii et G. De Jarlais, « Flow visualization study of inverted annular flow of post-dryout heat transfer region », Nuclear Engineering and Design, 1987.
[2] G. De jarlais, M. Ishii, et J. Linehan, « Hydrodynamic stability of inverted annular flow in an adiabatic simulation », Argonne National Laboratory, CONF-830702-9, 1983.
[3] T. G. Theofanous, « The boiling crisis in nuclear reactor safety and performance », International Journal of Multiphase Flow, vol. 6, no 1, p. 69-95, févr. 1980, doi: 10.1016/0301-9322(80)90040-3.
[4] N. Takenaka, T. Fujii, et others, « Flow pattern transition and heat transfer of inverted annular flow », Int. J. Multiphase Flow, 1989.
[5] M. A. El Nakla, D. C. Groeneveld, et S. C. Cheng, « Experimental study of inverted annular film boiling in a vertical tube cooled by R-134a », International Journal of Multiphase Flow, vol. 37, p. 37-75, 2011.
[6] Q. Liu, J. Kelly, et X. Sun, « Study on interfacial friction in the inverted annular film boiling regime », Nuclear Engineering and Design, vol. 375, 2021.
[7] K. K. Fung, « Subcooled and low quality film boiling of water in vertical flow at atmospheric pressure », PhD Thesis, Argonne National Laboratory, 1981.

Vers une compréhension du comportement expansif de certains enrobés cimentaires de concentrats d’évaporation : approche expérimentale et modélisation couplée chimie-transport-mécanique simplifiée

Dans l’industrie nucléaire, l’évaporation est un procédé communément utilisé pour réduire le volume des effluents radioactifs de faible ou moyenne activité avant leur conditionnement. Il en résulte des concentrats d’évaporation, solutions de forte salinité pouvant contenir un large éventail d’espèces ioniques. Ces concentrats sont ensuite conditionnés en matrice cimentaire, matériau présentant de nombreuses qualités intrinsèques (faible coût, disponibilité, simplicité de mise en œuvre, bonne résistance mécanique, stabilité sous irradiation…). L’acceptation en stockage des colis de déchets cimentés passe néanmoins par le respect d’un certain nombre de spécifications. Il est ainsi nécessaire de vérifier l’absence d’expansion conduisant à une dégradation de la matrice lors d’une conservation en environnement humide.
La thèse visera à comprendre les mécanismes qui régissent les variations volumiques d’enrobés de concentrats d’évaporation lorsqu’ils sont conservés sous eau. L’étude sera menée sur déchets simulés, reconstitués par dissolution dans l’eau de sels aux concentrations désirées. Elle débutera par une phase expérimentale qui fournira les données d’entrée pour une modélisation physico-chimique simplifiée des enrobés afin d’en estimer le comportement mécanique macroscopique, ainsi que les principaux flux lixiviés.
Ce projet de recherche s'adresse à un doctorant désireux de renforcer ses compétences en science des matériaux tout en contribuant à des solutions innovantes pour le conditionnement des déchets radioactifs. Il sera mené en partenariat avec l’ONDRAF, l’Organisme National belge pour la gestion des Déchets Radioactifs, et s’appuiera sur les compétences de deux laboratoires du CEA, le Laboratoire de Formulation et de Caractérisation des Matériaux Minéraux (CEA Marcoule) ainsi que le Laboratoire d’Etude du Comportement des Bétons et Argiles (CEA Saclay).

FREEZE-CASTING : TEXTURATION PAR LA GLACE

Le sujet de thèse se focalise sur les matériaux combustible de type MOX à porosité contrôlée. L'étudiant devra mettre au point une suspension aqueuse concentrée en phase solide, dispersée et stable dans le temps vis à vis de la sédimentation. Cette suspension sera optimisée grâce à un plan d'expériences. Les essais à réaliser seront typiquement des mesures de potentiel zêta et de rhéologie. Les paramètres à prendre en compte seront le taux de matière sèche ainsi que la nature et la concentration en certains additifs (dispersants, surfactants, liants organiques) pouvant être incorporés dans la formulation.
Dans un second temps, les conditions de texturation par la croissance contrôlée de cristaux de glace seront explorées, là aussi au moyen d'un plan d'expériences.
Après lyophilisation et frittage, l'objectif est l'obtention d'une porosité résiduelle contrôlée en taille, en morphologie et en interconnexion. Les microstructures frittées seront caractérisées par céramographie, microscopie électronique en balayage, analyse d'images et tomographie X sur une ligne pouvant accueillir des matériaux radioactifs.

Etude à l’échelle atomique de la mobilité des dislocations dans le combustible MOX

La transition vers la neutralité carbone exige une augmentation rapide des énergies décarbonées, dont le nucléaire, qui nécessite une compréhension approfondie des matériaux irradiés. Le combustible à oxyde mixte (MOX) est particulièrement important, car il optimise l'utilisation des ressources nucléaires et réduit les déchets radioactifs. Le comportement mécanique du MOX sous irradiation est crucial pour garantir l’intégrité du combustible dans diverses conditions de fonctionnement.

L’objectif de la thèse est de réaliser des simulations atomistiques afin de comprendre la mobilité des dislocations, essentielle pour soutenir la modélisation multiéchelle du comportement mécanique du MOX. Des calculs de dynamique moléculaire permettront d'analyser la mobilité des dislocations en fonction de diverses conditions de température, de contraintes, de teneur en plutonium et de déviations à la stœchiométrie, avec pour but d’établir des lois de vitesse. Les résultats de ces simulations amélioreront la modélisation micromécanique dans la plateforme de simulation PLEIADES du CEA, dédiée à la simulation du cycle de vie complet du combustible nucléaire, de sa fabrication jusqu'à l’entreposage.

Le doctorant sera accueilli au Laboratoire de Modélisation du Comportement des Combustibles (Institut IRESNE, CEA-Cadarache), un environnement dynamique composé de 11 chercheurs et d'un nombre équivalent de doctorants. Situé en Provence, ce centre offre un cadre de travail agréable, entre les parcs naturels du Verdon et du Lubéron. La thèse se fera en collaboration avec l'IM2NP, un laboratoire à la pointe de la recherche en physique des matériaux.

Le candidat doit avoir de solides bases en physique des matériaux, idéalement en mécanique aux petites échelles. Ces compétences pourront être renforcées durant un stage de M2 au sein du laboratoire. Le doctorant valorisera son travail à travers des publications scientifiques et des présentations en conférences internationales, ouvrant ainsi des opportunités dans les domaines de la recherche et de l'industrie.

Matériaux fonctionnels luminescents développés par fabrication additive pour le suivi de la corrosion

Dans le cadre de la transition énergétique, prolonger la durée de vie des composants métalliques exposés à des environnements corrosifs est essentiel, notamment dans l'industrie nucléaire, où les conditions agressives entraînent une dégradation rapide. Les méthodes de maintenance actuelles, comme les contrôles non destructifs par ultrasons, sont limitées pour détecter la corrosion localisée. Pour y remédier, des techniques basées sur la luminescence ont été développées pour un suivi in situ de la perte de matière. Des recherches récentes ont démontré l'intégration de luminophores dans des composants métalliques par fabrication additive, offrant ainsi des propriétés optiques et la possibilité de servir de marqueurs de corrosion. Cependant, leur comportement en milieu corrosif et leurs caractéristiques luminescentes nécessitent une exploration approfondie.
Ce projet de thèse vise à intégrer dans des matrices métalliques divers candidats luminescents par fusion laser sur lit de poudre (L-PBF) tout en étudiant l'interdépendance entre microstructure et corrosion. La corrosion sera évaluée dans des milieux salins et acides nitriques pour identifier les mécanismes de corrosion et optimiser l'application. Les essais de corrosion (immersion et électrochimiques), accompagnés d'observations microstructurales, permettront d’évaluer la durée des luminophores sur la structure avant de migrer dans le milieu, information essentielle pour définir le dispositif de détection et les intervalles de maintenance. Un banc d'essai sera également mis en place pour surveiller la corrosion in situ.

Structure et mobilité des agrégats et boucles d'interstitiels dans l'oxyde d'uranium

L’oxyde d’uranium (UO2) est le combustible usuel des centrales nucléaires à fission. A ce titre son comportement sous irradiation est très étudié. L’irradiation crée des défauts lacunaires ou interstitiels qui vont piloter l’évolution de la microstructure du matériau qui elle-même va impacter ses propriétés physiques (par exemple sa conductivité thermique) et mécaniques. Les agrégats d’interstitiels en particulier jouent un rôle prépondérant.
D’une part, aux plus petites tailles, la diffusion des interstitiels dans UO2 est encore assez mal comprise. En effet, expérimentalement, on observe l’apparition de boucles de dislocations constituées d’interstitiels de tailles pouvant atteindre la dizaine de nanomètres. A l’inverse on n’observe pas de cavités et les défauts lacunaires restent de tailles subnanométriques. Cela dénote une diffusion plus rapide des interstitiels que des lacunes, la diffusion permettant l’agglomération des interstitiels et la formation de boucles. Pourtant les calculs à l’échelle atomique ne montrent pas de différence majeure entre les coefficients de diffusion des lacunes et des interstitiels dans UO2. Une hypothèse pour expliquer cette contradiction apparente est que ce seraient les agrégats d’interstitiels qui diffuseraient rapidement (Garmon, Liu et al. 2023).
D’autre part, on s’attend à ce que les agrégats d’interstitiels tridimensionnels soient les germes des boucles de dislocations observées en microscopie électronique à transmission dans l’oxyde d’uranium irradié. Mais les mécanismes de transformations des agrégats en boucles et de changement de nature de boucles restent incompris dans l’oxyde d’uranium. Ces mécanismes ont très récemment été élucidée pour des métaux cubique à face centré (Jourdan, Goryaeva et al. 2024). Il est possible que des mécanismes comparables soient à l’œuvre dans UO2 avec la complication induite par l’existence deux sous-réseaux.
Nous proposons donc d’étudier par simulations à l’échelle atomique les agrégats d’interstitiels dans UO2.
On abordera d’abord la structure de ces agrégats subnanométriques tridimensionnels. Pour ce faire nous utiliserons les outils de classification des structures de défauts par intelligence artificielle mises au point au laboratoire (Goryaeva, Lapointe et al. 2020). On étudiera la diffusion de ces objets, par dynamique moléculaire et par recherche automatique de cols de migration à l’aide d’outils de type kinetic-ART (Béland, Brommer et al. 2011). Dans un deuxième temps, on étudiera la stabilité relative des agrégats 3D et des boucles de dislocations fautées et parfaites et les transformations entre ces différents objets.
Cette étude devra reposer sur des potentiels d’interaction interatomiques. On commencera par utiliser les potentiels empiriques disponibles dans la littérature avant nous tourner vers les potentiels de type Machine Learning (Dubois, Tranchida et al. 2024) en développement au Département d’Etudes du Combustibles du CEA Cadarache.

Béland, L. K., et al. (2011). "Kinetic activation-relaxation technique." Physical Review E 84(4): 046704.

Chartier, A., et al. (2016). "Early stages of irradiation induced dislocations in urania." Applied Physics Letters 109(18).

Dubois, E. T., et al. (2024). "Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials." Physical Review Materials 8(2).

Garmon, A., et al. (2023). "Diffusion of small anti-Schottky clusters in UO2." Journal of Nuclear Materials 585: 154630.

Goryaeva, A. M., et al. (2020). "Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores." Nature Communications 11(1).

Jourdan, T., et al. (2024). "Preferential Nucleation of Dislocation Loops under Stress Explained by A15 Frank-Kasper Nanophases in Aluminum." Physical Review Letters 132(22).

Compréhension des mécanismes de piégeage de l’hélium dans des nouvelles nuances d’alliages base nickel développées pour les réacteurs à sel fondu

Les alliages base nickel sont les matériaux de structure naturels envisagés pour les Réacteurs à Sel Fondu (RSF). Ils présentent d’excellentes caractéristiques mécaniques et une bonne résistance à la corrosion. Dans ces matériaux, la production d’hélium, principalement causée par la transmutation du nickel par les neutrons rapides peut atteindre des teneurs suffisantes pour fragiliser fortement le matériau ou provoquer son gonflement sous irradiation. L’hélium est très peu soluble dans le matériau et condense sous forme de bulles ou ségrége aux joints de grains. Pour limiter ces phénomènes et réussir à piéger l’hélium, une solution consiste à introduire dans le matériau qui sera irradié, une densité importante de nano-précipités dont les interfaces serviront de site de germination pour des bulles nanométriques à même de piéger l’hélium « sur place » pour empêcher ce dernier de migrer vers les joints de grains et de dégrader les performances du matériau. Il s'agira d'étudier par microscopie électronique en transmission corrigée la cinétique de précipitation des phases thermodynamiquement attendue ainsi que la structure atomique des interfaces formées entre les précipités et la matrice. Une simulation de la précipitation par champ de phase sera également envisagée. Enfin, les mécanismes de piégeage de l'He aux interfaces sera étudié à l'aide de la spectroscopie de perte d'énergie des électrons (EELS).

Simulation atomistique de la rupture de verres borosilicatés hétérogènes

Les verres borosilicatés hétérogènes contiennent des précipités cristallins ou amorphes qui forment des phases secondaires incrustées dans la matrice vitreuse. Ces matériaux sont appréciés pour leur résistance élevée au choc thermique et leur excellente durabilité chimique, les rendant idéaux pour diverses applications telles que les ustensiles de cuisine et le matériel de laboratoire. En particulier, dans l'industrie nucléaire, de nombreuses matrices vitreuses de conditionnement de déchets radioactifs contiennent des précipités en raison de la présence d'éléments peu solubles.

Il a été démontré que des phases secondaires peuvent affecter considérablement les propriétés mécaniques, en particulier la résistance à la fracture. Cependant, les mécanismes spécifiques liés à ce phénomène à l'échelle atomique restent mal expliqués. En particulier, il est crucial de comprendre l'effet de la nature de ces phases (cristallines ou amorphes) et de leur interface avec la matrice vitreuse.

L'objectif principal de ce projet est d'étudier les mécanismes spécifiques par lesquels les précipités influencent les propriétés mécaniques à l'échelle atomique. Il vise également à comprendre comment ces précipités affectent la propagation de fissures. Pour cela, des outils de modélisation numérique basés sur la dynamique moléculaire seront utilisés. Cette technique simule le comportement individuel des atomes au fil du temps sous différentes conditions de test. Ainsi, elle permet d'examiner la structure locale des pointes de fissure et leur interaction avec les précipités à l'échelle atomique, fournissant des informations précieuses sur les mécanismes sous-jacents de résistance aux fissures dans les verres hétérogènes.

Combustion d'hydrogène et d'ammoniac en milieux poreux : expériences et modélisation

- Contexte
Les perspectives énergétiques actuelles suggèrent l'utilisation de l'hydrogène (H2) et de l'ammoniac (NH3) comme vecteurs d'énergie décarbonés. La combustion du NH3 offre des avantages tels qu'une densité énergétique élevée et un stockage sûr, mais présente une plage d’inflammabilité étroite et des émissions élevées de NOx. Il est possible d'obtenir de l'hydrogène par craquage partiel d’ammoniac pour créer des mélanges ayant des propriétés de combustion plus favorables, mais il reste des questions ouvertes concernant les émissions de polluants et la teneur en NH3 imbrûlé.

- Défis
Les brûleurs poreux sont des candidats prometteurs pour la combustion de mélanges NH3/H2 à faibles émissions polluantes. Malheureusement, les problèmes de durabilité des matériaux et la complexité de la stabilisation des flammes constituent encore des obstacles importants à leur industrialisation. Toutefois, les récentes avancées dans le domaine de la fabrication additive permettent un design avancé de matrices poreuses, leur caractérisation expérimentale restant difficile en raison de l'opacité de la matrice solide.

- Objectifs de recherche
Le doctorant exploitera un banc expérimental au CEA Saclay pour mener des expériences de combustion avec des mélanges NH3/H2/N2+air dans différents brûleurs poreux. Les tâches principales incluront la conception de nouvelles géométries poreuses, la comparaison des résultats expérimentaux avec les simulations numériques, un travail de modélisation 1D par moyennes volumiques et théorie asymptotique. Les mesures expérimentales comprendront : l'anémométrie à fil chaud, la thermométrie infrarouge, l'analyse de la composition des gaz de sortie, la chimiluminescence et les diagnostics laser. Les brûleurs poreux seront fabriqués à l'aide de techniques d'impression 3D avec des matériaux tels que l'acier inoxydable, l'inconel, l'alumine, la zircone et le carbure de silicium.

La recherche vise à développer des brûleurs poreux plus robustes et plus efficaces pour la combustion de mélanges NH3/H2, améliorant ainsi leur application pratique pour atteindre la neutralité carbone. Le candidat contribuera à faire progresser le domaine grâce à des données expérimentales, des conceptions innovantes et des techniques de modélisation améliorées.

Modélisation de la chute de gouttes dans un volume libre, en support au code système CATHARE

Cette thèse porte sur l'étude de la chute de gouttes dans des volumes libres, dans le cadre de l'amélioration continue des modèles physiques du code CATHARE, utilisé pour les études de sûreté des Réacteurs à Eau Pressurisée. Les modèles actuels reposent sur les travaux d'Ishii et Zuber, qui modélisent la vitesse de chute des gouttes dans un fluide diphasique. L'objectif de la thèse est de raffiner la précision de ce modèle en y intégrant des paramètres supplémentaires et en le validant grâce à des expériences telles que celles de Dampierre et CARAYDAS. Le doctorant devra concevoir un modèle mécaniste plus représentatif, fondé sur des données expérimentales ou des simulations CFD si nécessaire. L'innovation réside dans le développement d'une modélisation plus fidèle des processus de chute de gouttes, ouvrant la voie à des applications spécifiques, telles que la modélisation des sprays, et contribuant ainsi à la validation du code CATHARE dans des domaines supplémentaire.

Top