Développement d’outil de modélisation pour la corrosion en milieu poreux

Dans un contexte où la durabilité des matériaux s’avère fondamentale pour la sécurité des
installations et la promotion d’une transition énergétique durable, la maîtrise des phénomènes
de corrosion constitue un enjeu majeur pour des secteurs clés tels que le transport d’énergie
décarbonée via des conduites enterrées et le génie civil (hydrogène, nucléaire, infrastructures
souterraines). Le projet CORPORE s’inscrit dans cette problématique en proposant de
développer des modèles avancés de simulation numérique pour étudier la corrosion en milieu
poreux à l’aide de COMSOL Multiphysics. L’objectif scientifique et technologique principal consiste à élaborer une modélisation multiphysique intégrée des mécanismes électrochimiques et de transport au sein de matériaux
poreux : étude de l’influence couplée de la chimie, des propriétés du réseau poreux et des
interactions matériau-environnement sur l’initiation et la propagation de la corrosion. Cette
démarche permettra d’optimiser les stratégies de protection anticorrosion, de réduire les coûts
de maintenance et d’accroître la durée de vie des structures. Sur le plan de l’état de l’art, la
plupart des modèles se focalisent aujourd’hui sur des milieux homogènes et des approches compartimentées. Notre projet se démarque par l’intégration d’une modélisation mécanistique multi-échelles alliée à l’exploitation de données archéologiques pour une validation sur le long terme.

Evaluation de méthodes polytopales pour la CFD sur architecture GPU

Cette proposition de recherche se place dans le cadre de l’étude et de l’implémentation de méthodes polytopales pour résoudre les équations de la mécanique des fluides. Ces méthodes ont pour but de traiter des maillages les plus généraux possibles permettant de s’affranchir de contraintes géométriques de forme ou héritées de manipulations CAO comme des extrusions ou des assemblages faisant apparaître des non-conformités. Ces travaux se placent également dans le cadre du calcul intensif en vue de répondre à l’augmentation des moyens de calcul et en particulier du développement du calcul massivement parallélisé sur GPU.

L’objectif de cette thèse est donc de reprendre les travaux réalisés sur les méthodes de type polytopales existantes dans le logiciel TRUST que sont les méthodes "Compatible Discrete Operator" (CDO) et"Discontinuous Galerkin" (DG), de compléter leur étude notamment pour les opérateurs de convection et d’investiguer d’autres méthodes existantes dans la littérature comme les méthodes "Hybrid High Order"(HHO), "Hybridizable Discontinuous Galerkin" (HDG) ou "Virtual Element Method" (VEM).

Les objectifs principaux sont d’évaluer :
1. le comportement numérique de ces différentes méthodes sur les équations de Stokes/Navier-Stokes,
2. l’adaptabilité de ces méthodes à des architectures hétérogène telles que les GPU.

Optimisation topologique multi-matériaux robuste sous contrainte de fabricabilité appliquée au design d’aimant supraconducteur pour les IRMs haut champ

Les scanners IRM sont des outils très précieux pour la médecine et la recherche, dont le fonctionnement repose sur l'exploitation des propriétés des noyaux atomiques plongés dans un champ magnétique statique très intense. Celui-ci est généré, dans la quasi-totalité des scanner IRM, par un électroaimant supraconducteur.

La conception des électroaimants pour les IRM doit répondre à des contraintes très exigeantes sur l'homogénéité du champ produit. De plus, à mesure que le champ magnétique devient plus intense, les forces s'exerçant sur l'électroaimant augmentent et font émerger le problème de la tenue mécanique des bobinages. Enfin, la « fabricabilité » de l'électroaimant impose des contraintes sur les formes des solutions acceptables. La conception des électroaimants supraconducteurs pour les IRM demande donc un effort minutieux d'optimisation du design, soumise à des contraintes basée sur une modélisation multiphysique magnéto-mécanique.

Une nouvelle méthodologie innovante d'optimisation topologique multiphysique a été développée, sur la base d'une méthode à densité (SIMP) et d'un code de calcul par éléments finis. Celle-ci a permis de produire des designs d'aimants satisfaisant les contraintes sur l'homogénéité du champ magnétique produit et sur la tenue mécanique des bobinages. Toutefois, les solutions obtenues ne sont pas fabricables en pratique, tant du point de vue de la fabricabilité des bobines (enroulements des câbles) que de son intégration avec une structure portante (maintien des bobines par une structure en acier).

L'objectif de cette thèse est d'enrichir la méthode d'optimisation topologique amorcée en formalisant et en implémentant des contraintes de fabrication liées à manière de bobiner, aux contraintes résiduelles résultant d'une pré-tension des câbles au bobinage, et également à la présence d'un matériau de structure pouvant reprendre les efforts transmis par les bobines.

développement d'un procédé couplant la capture CO2 et son hydrogenation en carburant de synthèse (Negative Emission Technologie)

Jusqu’à récemment, les technologies de captage du CO2 étaient développées de manière disjointe de celles de valorisation du CO2 alors que le couplage entre l’étape de désorption du CO2 et la transformation chimique du CO2 généralement exothermique permettrait des gains énergétiques importants.
Des premières solutions couplées ont été proposées récemment mais sont essentiellement à température modérée (60-180°C) [1], voire récemment proches de 225°C [2].
L'objectif de cette thèse de doctorat est d'étudier, tant sur le plan expérimental que théorique un système couplé dans une gamme de température 250-325°C qui permet via une hydrogenation catalytique de type Fischer-Tropsch ou de méthanation l’obtention directe de produits à plus forte valeur ajoutée.
[1] Zhao, Lan, Hai-Yang Hu, An-Guo Wu, Alexander O. Terent’ev, Liang-Nian He, et Hong-Ru Li. « CO2 capture and in-situ conversion to organic molecules ». Journal of CO2 Utilization 82 (avril 2024)
[2] Koch, Christopher J., Zohaib Suhail, Alain Goeppert, et G. K. Surya Prakash. « CO2 Capture and Direct Air CO2 Capture Followed by Integrated Conversion to Methane Assisted by Metal Hydroxides and a Ru/Al2O3 Catalyst ». ChemCatChem 15, no 23

Réduction du ferraillage dans les structures en béton armé par calculs non linéaires et optimisations topologique et évolutionnaire

Les armatures en acier jouent un rôle majeur dans le comportement des structures en béton armé. Néanmoins, de forts conservatismes peuvent parfois être imposés par les règles de dimensionnement, questionnant la réalisation de l’ouvrage (faisabilité) ou sa viabilité (économique, environnementale…). C’est dans ce contexte que s’inscrivent les travaux de thèse. En s’appuyant sur des développements récents, ils viseront à proposer une approche de conception innovante, s’appuyant sur l’utilisation de calculs éléments finis non linéaires, en les associant à des algorithmes d’optimisation topologique (définition des directions de renforcement et des sections d’armatures) et évolutionnaire (positionnement des barres à section d’armatures fixées). La méthode devra permettre par un processus itératif d’aboutir à des solutions répondant à un optimal de conception. Au regard des objectifs à minimiser (qui pourront être contradictoires – coût, faisabilité, résistance, empreinte carbone…), elle orientera ainsi l’état des paramètres d’entrée à partir d’une analyse des sorties d’intérêt. L’application à des cas d’usage complexes, issus de la pratique (jonction poteaux-poutres par exemple) démontrera la pertinence de l’approche, par rapport à des méthodes de dimensionnement plus conventionnelles. Au terme de la thèse, le doctorant aura développé des compétences dans l’utilisation et le développement d’outils à l’état de l’art, allant de la simulation par éléments finis non linéaire jusqu’aux méthodes modernes d’optimisation par intelligence artificielle.

Simulations Monte-Carlo à haute-fidélité du bruit neutronique dans les réacteurs nucléaires de puissance

Les réacteurs nucléaires en fonctionnement sont soumis à diverses perturbations. Celles-ci peuvent inclure des vibrations des crayons et assemblages de combustible dues aux interactions fluide-structure avec le modérateur, ou même des vibrations de la cuve du cœur, des grilles et de l'enceinte pressurisée. L’ensemble de ces perturbations peut entraîner de petites fluctuations périodiques de la puissance du réacteur autour d’un niveau moyen stationnaire. Ces fluctuations de puissance sont appelées « bruit neutronique ». La capacité de simuler différents types de perturbations internes au cœur permet aux concepteurs et exploitants des réacteurs de prédire le comportement du flux neutronique en présence de telles perturbations. Ces dernières années, de nombreux groupes de recherche ont travaillé au développement de modèles numériques pour simuler ces « sources de bruit neutronique » et leurs effets sur le flux neutronique dans le réacteur.
L’objectif principal de cette thèse de doctorat sera de porter les simulations Monte-Carlo du bruit neutronique à l’échelle des calculs industriels réalistes des cœurs de réacteurs nucléaires, avec une modélisation physique haute-fidélité (transport de particules à énergie continue). Dans ce cadre, l’étudiant/e ajoutera de nouvelles capacités de simulation du bruit neutronique à TRIPOLI-5, le code Monte-Carlo de transport de particules de nouvelle génération, développé conjointement par le CEA et l’ASNR, avec le soutien d’EDF spécifiquement pour les calculs à haute performance (HPC).

Préconditionnement de schémas itératifs pour la résolution en éléments finis mixte d’un problème aux valeurs propres appliquée à la neutronique.

La neutronique est l’étude du cheminement des neutrons dans la matière et des réactions qu’ils y induisent, en particulier la génération de puissance par la fission de noyaux lourds. La modélisation du flux de neutrons stationnaire dans un cœur de réacteur repose sur la résolution d’un problème aux valeurs propres généralisé de la forme :
Trouver (phi, keff) tel que A phi=1/keff B phi et keff est la valeur propre de plus grand module, où A est la matrice de disparition supposée inversible, B représente la matrice de production, phi désigne le flux de neutrons et keff est appelé le facteur de multiplication.

L’outil de calcul neutronique APOLLO3® est un projet commun du CEA, Framatome et EDF pour le développement d’un code de nouvelle génération pour la physique de cœurs de réacteurs pour à la fois des besoins de R&D et des applications industrielles [4].
Le solveur MINOS [2] est développé dans le cadre du projet APOLLO3®. Ce solveur est basé sur la discrétisation en éléments finis mixtes du modèle de diffusion neutronique ou du modèle de transport simplifié. La stratégie de résolution du problème aux valeurs propres généralisé ci-dessus est itérative ; elle consiste à appliquer l’algorithme de la puissance inverse [6].

La vitesse de convergence de cet algorithme de la puissance inverse dépend du gap spectral. Dans le cadre des cœurs de grande taille tels que le réacteur EPR, on observe que le gap spectral est proche de 1, ce qui dégrade la convergence l’algorithme de la puissance inverse. Il est nécessaire d’appliquer des techniques d’accélération de manière à réduire le nombre d’itérations [7]. Dans le cadre du transport neutronique, le préconditionnement appelé Diffusion Synthetic Acceleration est très populaire pour l’itération dite « interne » [1] mais également récemment appliqué à l’itération dite « externe » [3]. Une variante de cette méthode a été introduite dans [5] pour la résolution d’un problème à source. Il y est montré théoriquement la convergence de cette variante dans tous les régimes.

L’objectif de la thèse est de contribuer à l’accélération du schéma itératif existant dans le solveur MINOS. Il s’agira de construire une approche de préconditionnement adaptée au solveur MINOS.

[1] M. L. Adams, E. W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Progress in Nuclear Energy, Volume 40, Issue 1, 2002.

[2] A.-M. Baudron and J.-J. Lautard. MINOS: a simplified PN solver for core calculation. Nuclear Science and Engineering, volume 155(2), pp. 250–263 (2007).

[3] A. Calloo, R. Le Tellier, D. Couyras, Anderson acceleration and linear diffusion for accelerating the k-eigenvalue problem for the transport equation, Annals of Nuclear Energy, Volume 180, 2023.

[4] P. Mosca, L. Bourhrara, A. Calloo, A. Gammicchia, F. Goubioud, L. Mao, F. Madiot, F. Malouch, E. Masiello, F. Moreau, S. Santandrea, D. Sciannandrone, I. Zmijarevic, E. Y. Garcia-Cervantes, G. Valocchi, J. F. Vidal, F. Damian, P. Laurent, A. Willien, A. Brighenti, L. Graziano, and B. Vezzoni. APOLLO3®: Overview of the New Code Capabilities for Reactor Physics Analysis. Nuclear Science and Engineering, 2024.

[5] O. Palii, M. Schlottbom, On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer, Computers & Mathematics with Applications, Volume 79, Issue 12, 2020.

[6] Y. Saad. Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied Mathematics, 2011.

[7] J. Willert, H. Park, and D. A. Knoll. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem. Journal of Computational Physics, 2014, vol. 274, p. 681-694.

Interaction fluide-structure dans un réseau de solides élancés en milieu confiné

Dans le cadre de l’étude des déformations progressives des assemblages combustibles au sein des cœurs de REP, le CEA a développé deux outils de simulation. Le premier, Phorcys [1], permet de calculer l’écoulement du caloporteur dans et autour des assemblages légèrement déformés à l’aide d’un réseau de pertes de charges paramétriques, puis d’en déduire les forces fluides qui s’appliquent sur les structures. Le second, DACC [2], traite le comportement thermomécanique sous irradiation et l’interaction des assemblages entre eux lors des cycles de puissance, au travers d’une simulation éléments finis. L’interaction fluide-structure est enfin traitée grâce au couplage numérique de ces deux outils, au sein duquel des incertitudes peuvent être propagées et analysées [3].
Le programme de relance du nucléaire (SMR, réacteurs de 4ème génération, PN etc.) est pourvoyeur de nouvelles technologies ainsi que de nouvelles topologies de cœur et d’assemblages combustibles qu’il convient de pouvoir analyser sous l’angle des risques associés aux déformations quasi-statiques des assemblages en cœur. Dans un double souci de capitalisation et d’extension des possibilités de simulation, on souhaite rendre ces deux outils capables de traiter les écoulements et les déformations de structures élancées de manière plus générique afin de couvrir efficacement et rapidement un large panel de technologies nucléaires.
Pour ce faire, il conviendra d’identifier, classifier, puis modéliser de manière réduite, quoique prédictive, les principales structures d’écoulement qui peuvent avoir cours au sein d’un volume fluide encombré de structures élancées à forte surface d’échange. Le modèle hydraulique complet du cœur sera ainsi créé par concaténation de modèles élémentaires respectant des conditions strictes d’interfaçage. Une méthode d’analyse de l’écoulement global obtenu permettra alors la quantification du champ de force contribuant aux déformations. Une logique similaire de classification et de changement d’échelle serait également mise en œuvre en ce qui concerne l’évaluation des déformations réversibles et irréversibles d’une structure élancée, soumises à des efforts extérieurs et à des irradiations sévères. Une difficulté est que la topologie fine d’un assemblage combustible peut présenter des non-linéarités aux petites échelles qui se propagent en partie à l’échelle macroscopique. In fine, on devra mettre en œuvre un couplage partitionné, robuste et à coût maîtrisé, entre l’écoulement du caloporteur et ces structures individuelles, qui se déforment et interagissent dans un environnement contraint.
Le cadre de modélisation ainsi construit permettra d’étudier les déformations progressives d’assemblages et les risques associés pour un spectre large de technologies de réacteurs nucléaires.

Modélisation et simulation d'écoulements convectifs dispersés par approche de mélange

L’objectif de la thèse est de valider une modélisation par mélange avec un déséquilibre de vitesse entre les
phases pour des configurations variées allant des écoulements à bulles adiabatiques aux écoulements bouillants
en passant par des régimes plus complexes. De nombreux travaux existent sur la modélisation des écarts de
vitesse pour des écoulements unidimensionnels, mais très peu se sont concentrées sur la modélisation d’une
vitesse relative radiale entre les phases. Cette approche permet une représentation plus précise pour un coût
de modélisation limité. Le travail de thèse s’appuiera sur des bases de données expérimentales existantes et
une revue bibliographique pour proposer, ajouter et tester de nouveaux modèles. Un des objectifs de la
thèse sera de proposer un jeu de modèles permettant la représentation du plus grand nombre d’écoulements
multiphasiques. Différents axes pourront être explorés en fonction de l’avancement de la thèse et des intérêts
de l’étudiant. Une première configuration d’intérêt sera les écoulements gaz-gouttes, caractéristique par
exemple de la partie supérieure d’un générateur de vapeur. Cela permettra d’évaluer les capacités du logiciel
dans une situation topologiquement proche des écoulements à bulles, plus étudiées, mais physiquement
différentes du fait de l’inversion du rapport des masses volumiques. Les géométries d’intérêt seront dans un
premier temps simple (cylindre vertical, canal rectangulaire), mais d’autres géométries sont envisageables en
fonction de la littérature et des axes de modélisation identifiés.

Ce travail de thèse est un sujet très actif et d’enjeu majeur pour le laboratoire. Le/la doctorant/e sera
amené à présenter ses travaux dans des congrès nationaux et internationaux, ainsi qu’au travers de publications
scientifique. Le laboratoire comprend de nombreux chercheurs et doctorants qui utilisent et développent
activement le logiciel créant un espace de travail riche et offrant un soutien technique crucial aux doctorants.

Interaction fluide-structure dans des mélanges : théorie, simulations numériques et expériences

Ce projet de doctorat s’inscrit dans le cadre de la recherche sur les interactions fluide-structure (IFS) dans des milieux complexes, notamment des mélanges fluides comportant plusieurs phases (liquide/liquide ou liquide/gaz) et/ou des particules en suspension. L’objectif est de développer une compréhension approfondie et multi-échelle des mécanismes couplés entre structures déformables (gouttes, interfaces, parois souples) et écoulements de mélanges complexes, en combinant modélisation théorique, simulations numériques avancées, et confrontation aux données expérimentales.

Top