Etude des propriétés thermomécaniques des écoulements d'hydrogène solide

Le Département des Systèmes Basses Températures (DSBT) de l’IRIG développe plusieurs thématiques de recherche autour de l’hydrogène solide cryogéniques et ses isotopes. Les applications de cette recherche vont de la production de cibles d’hydrogène solide micrométriques renouvelables pour la génération de protons de forte énergie pour l'accélération laser-plasma, à la formation et l’injection de glaçons d’hydrogène de taille millimétrique ou centimétrique pour l’alimentation et le contrôle du plasma dans les réacteurs de fusion par confinement magnétique ou inertiel. Une problématique transverse à ces applications réside dans la connaissance fine des propriétés mécaniques de l'hydrogène solide, que cela soit pour mieux comprendre la physique d’extrusion et de production des cibles ou celle de la formation et de l’accélération des glaçons pour leur injection dans les plasmas de fusion.
Le sujet de cette thèse se focalise sur l’étude de l’extrusion de l’hydrogène solide sous pression. Sur cette technologie, le DSBT développe depuis plus de 10 ans plusieurs cryostats permettant la production de ruban d’hydrogène solide, dont la taille varie de quelques millimètres à quelques dizaines de micromètres, extrudés à des vitesses de quelques millimètres par seconde.
L’axe principal de recherche est une meilleure compréhension des mécanismes d’extrusion pour permettre le développement d’outils prédictifs numériques de conception de système d’extrusion. Cette thèse expérimentale reposera sur de la rhéométrie cryogénique basée sur un rhéomètre capillaire et/ou une expérience de couette développée au cours d’une précédente thèse. Cette étude se fera en collaboration avec le Laboratoire de Rhéologie et Procédés du l’Université Grenoble Alpes.

Vers une technologie piézoélectrique éco-innovante, durable et fiable

Vous recherchez un sujet de thèse à la frontière entre éco-innovation et high-tech… ce sujet est alors pour vous !

L'objectif central de cette thèse est de réduire l'empreinte environnementale de la technologie piézoélectrique (PZE) appliquée aux micro-actionneurs/capteurs, tout en préservant des niveaux optimaux de performances électriques et de fiabilité. Actuellement, la technologie PZE repose sur l'utilisation du plomb, notamment le matériau PZT (Pb(Zr,Ti)O3), ainsi que des électrodes telles que le Pt, Ru, Au, et des éléments dopants comme le La, Mn, Nb pour optimiser les propriétés piézoélectriques et les performances électriques. Ces matériaux, en plus de leur coût écologique significatif, font face à des pénuries avérées ou imminentes.

Dans le contexte de la nécessaire frugalité liée à la transition énergétique, cette thèse se positionne comme une exploration des technologies microsystèmes plus respectueuses de l'environnement et durables. Les travaux de recherche visent à créer un abaque à trois entrées, évaluant l'empreinte écologique, les performances électromécaniques et la fiabilité des technologies existantes (avec plomb) par rapport à celles en cours de développement (sans plomb). Pour atteindre ces objectifs, le doctorant utilisera des Analyses de Cycles de Vie (ACV), des mesures électromécaniques et des essais de fiabilité (tests accélérés de vieillissement).

Cette recherche interdisciplinaire englobera des domaines tels que l'écoconception, la science des matériaux/interfaces et les procédés de fabrication microélectroniques. Le doctorant bénéficiera du soutien des laboratoires de ses encadrants, spécialisés dans les procédés de fabrication/intégration de microsystèmes, ainsi que dans la caractérisation électrique et la fiabilité. La collaboration avec la cellule « éco-innovation » du CEA-Leti enrichira également les ressources disponibles pour la réalisation de ces travaux.

Etude du comportement d'un composite CMC en température par essais in situ en tomographie X

Le sujet proposé concerne l’étude du comportement mécanique d’un matériau composites à matrice céramique de type oxyde/oxyde en température (jusqu’à 1000°C). L’originalité du sujet est l’utilisation de la tomographie X in situ pour accéder d’une part à la déformation macroscopique des éprouvettes testées et d’autre part aux mécanismes d’endommagement à l’échelle microscopique qui caractérisent ce type de matériaux dit « endommageables ».
Cette technique a été développée à température ambiante lors d'une thèse précédente : il s'agit ici de l'appliquer en température et sur des sollicitations plus complexes (eg traction-torsion). Il s'agira également de proposer des développements au protocole d'analyse par
corrélation d'image volumique existant.

Détection hors distribution avec des modèles de fondation de vision et des méthodes post-hoc

Le sujet de thèse se concentre sur l'amélioration de la fiabilité des modèles de deep learning, en particulier dans la détection des échantillons hors distribution (OoD), qui sont des points de données différents des données d'entraînement et peuvent entraîner des prédictions incorrectes. Cela est particulièrement important dans des domaines critiques comme la santé et les véhicules autonomes, où les erreurs peuvent avoir des conséquences graves. La recherche exploite les modèles de base de la vision (VFMs) comme CLIP et DINO, qui ont révolutionné la vision par ordinateur en permettant l'apprentissage à partir de données limitées. Le travail proposé vise à développer des méthodes qui maintiennent la robustesse de ces modèles pendant le fine-tuning, garantissant qu'ils peuvent toujours détecter efficacement les échantillons OoD. En outre, la thèse explorera des solutions pour gérer les changements de distribution des données au fil du temps, un défi courant dans les applications du monde réel. Les résultats attendus incluent de nouvelles techniques pour la détection OoD et des méthodes adaptatives pour les environnements dynamiques, améliorant ainsi la sécurité et la fiabilité des systèmes d'IA dans des scénarios pratiques.

Moniteur de Faisceau en Diamant pour la Thérapie FLASH

L'optimisation de la dose délivrée à la tumeur nécessite des techniques de traitement avancées. Une approche prometteuse consiste à délivrer la dose en utilisant l'irradiation à très haut débit de dose (Ultra High Dose Rate – UHDR ou radiothérapie FLASH), avec l'optimisation temporelle comme stratégie clé. Des études récentes ont mis en évidence l'efficacité de l'irradiation FLASH utilisant des électrons, montrant des capacités de destructions tumorales similaires à celles obtenues avec une irradiation conventionnelle mais avec un impact réduit sur les tissus sains. Pour exploiter pleinement ce potentiel, une nouvelle approche consistera à utiliser des faisceaux innovants, tels que les faisceaux d'électrons de haute énergie et à hauts débits de dose instantanés et présentant des doses par impulsion plusieurs ordres de grandeur supérieurs à ceux produits par les sources d’irradiation conventionnelles. Ces faisceaux prometteurs présentent un défi majeur pour leur monitoring et mesure, principalement en raison du débit de dose élevé pour lequel les systèmes de mesure actuels ne sont pas prévus de fonctionner.
Le Laboratoire de Capteurs et Instrumentation pour la Mesure (CEA-List) collaborera avec l'Institut Curie dans le cadre du projet FRATHEA. Nous proposons de développer un nouveau moniteur faisceau à base de diamant, connecté à une électronique dédiée, afin d'obtenir des mesures précises de la dose et de la forme des faisceaux pour des faisceaux d'électrons et de protons à haute énergie et haut débit de dose. Des techniques expérimentales interdisciplinaires, incluant la croissance de diamants, la microfabrication de dispositifs, la caractérisation des dispositifs sous sources radioactives et la caractérisation finale avec des faisceaux d'électrons et protons, seront utilisées pour le prototypage et l'évaluation du moniteur à faisceau en diamant.
Dans le cadre du projet FRATHEA, le doctorant travaillera sur les tâches suivantes :
· Croissance de structures de diamants monocristallin (scCVD) optimisées
· Caractérisation des propriétés électroniques des matériaux de diamant synthétisés
· Estimation des caractéristiques de réponse à la dose d'un prototype simplifié (brique élémentaire)
· Fabrication d'un moniteur de faisceau pixelisé
· Participation aux temps de faisceaux à l'Institut Curie pour les tests des dispositifs avec des faisceaux pré-cliniques
Compétences requises :
· Solide base en physique des semi-conducteurs et instrumentation
· Connaissance des détecteurs de rayonnement et des interactions rayonnement-matière
· Capacité à travailler efficacement en équipe et à faire preuve de rigueur technique dans les mesures
Compétences supplémentaires :
· Connaissances en électronique, y compris le traitement du signal, les amplificateurs, les oscilloscopes, etc.
· Familiarité avec la fabrication de dispositifs
· Expérience antérieure de travail avec des matériaux en diamant (atout mais pas obligatoire)
Profil :
· Niveau Master (M2) ou école d'ingénieur, spécialisation en mesures physiques ou instrumentation
Durée du doctorat : 3 ans
Date de début : Dernier semestre de 2025
Contact :

Michal Pomorski : michal.pomorski@cea.fr
Guillaume Boissonnat: guillaume.boissonnat@cea.fr
m.

Etudes des sources lasers à base d’alliage de GeSn pour la photonique Silicium moyen infra-rouge

Vous concevrez et fabriquerez en salle blanche des sources lasers et LEDS à base d’alliage GeSn. Ces nouveaux matériaux du groupe-IV à gap direct et épitaxié sur des wafers Si 200 mm sont considéré comme CMOS compatible et sont très prometteurs pour la réalisation de sources moyen infra-rouge bas coût. Vous caractériserez, sur un banc optique moyen infra-rouge, ces sources lumineuses, en vue de leur future intégration sur une plateforme photonique Germanium/Silicium. Enfin, vous évaluerez également la faisabilité de détection de gaz dans une gamme de concentrations de quelques dizaines à quelques milliers de ppm.
Les objectifs de la thèse sont de :
• Concevoir des empilements de GeSn (Si) efficaces confinant à la fois les électrons et les trous, tout en offrant un fort gain optique.
• Evaluer le gain optique sous pompage optique et injection électrique, à différentes contraintes et niveaux de dopage
• Concevoir et fabriquer des cavités laser à fort confinement optique
• Caractériser les composants fabriqués sous injection optique et électrique en fonction de leur état de déformation à température ambiante et à basse température.
• Obtenir des lasers continus du groupe-IV pompé électriquement
• Comprendre les phénomènes physiques pouvant impacter les performances des matériaux et des composants pour l’émission de lumière.
• Caractériser les meilleurs composants fabriqués pour des détections bas-couts de gaz environnementaux.
Ce travail impliquera des contacts avec des laboratoires étrangers travaillant sur le même sujet dynamique.

Modélisation des effets de compressibilité dans les approches RANS

Les effets de compressibilité sur les écoulements turbulents sont le plus souvent pris en compte au travers de l’hypothèse de Morkovin et l’introduction de la masse volumique dans les quantités transportées des équations du mouvement. En conséquence les modèles de turbulence, développés avec des hypothèses d’incompressibilité, sont utilisés tels quels, sans correction particulière. Pour des écoulements à grand nombre de Mach, et notamment les écoulements hypersoniques avec parois froides, des effets compressibles peuvent néanmoins se faire sentir sur la turbulence et il convient dès lors de disposer de corrections dans les modèles de turbulence servant à décrire le mouvement fluide.Jusqu’à récemment, les corrections usuellement utilisées, développées il y a plusieurs dizaines d’années, ne répondaient que partiellement aux problèmes constatés. Grâce à l’émergence de données DNS sur des écoulements à fort nombre de Mach, des travaux récents ont pu revisiter ces corrections dans le cadre d’un modèle RANS EVM (Eddy Viscosity Model) de type k-w. Ces nouvelles corrections correspondent en fait aux effets de quatre termes non modélisés dans les équations de transport des scalaires turbulents. En reprenant l’analyse des données DNS, complétées par de nouvelles, on se propose de reprendre la modélisation des effets de compressibilité en tentant de fermer les différents termes des équations. Ainsi, on envisage de développer des modèles RSM (Reynolds Stress Model) et EVM prenant en compte les différents effets compressibles.

Contrôle de manipulateur mobile à haute mobilité en contexte dynamique

Le développement de manipulateur mobile capable de capacités d’adaptation est porteur d’avancées importantes pour le développement de nouveaux moyens de production, que ce soit dans des applications industrielles ou agricoles. En effet de telles technologies permettent de réaliser des tâches répétitives avec précision et sans contraintes liées à la limitation de l’espace de travail. Néanmoins, l’efficience de tels robots est soumise à leur adaptation à la variabilité du contexte d’évolution et de la tâche à réaliser. Aussi, cette thèse propose de concevoir des mécanismes d’adaptation des comportements sensori-moteurs pour ce type de robots, afin de garantir une bonne adéquation de leurs actions en fonction de la situation. Elle envisage d’étendre les capacités de reconfiguration des approches de perception et de commande par l’apport de l’Intelligence Artificielle, ici comprise au sens de l’apprentissage profond. Il s’agira de développer de nouvelles architectures décisionnelles capables d’optimiser les comportements robotiques pour la manipulation mobile dans des contextes évolutifs (notamment intérieur-extérieur) et la réalisation de plusieurs travaux de précision.

Transition implicite/explicite pour la simulation numérique de problèmes d’Interaction Fluide Structure traités par des techniques de frontières immergées

Dans de nombreux secteurs de l’industrie, des phénomènes transitoires rapides interviennent dans des scénarii accidentels. Dans le cadre de l’industrie nucléaire, on peut citer, par exemple, l’Accident de Perte de Réfrigérant Primaire dans lequel une onde de détente susceptible de provoquer la vaporisation du fluide primaire et d’engendrer des dégâts structuraux se propage dans le circuit primaire d’un Réacteur nucléaire à Eau Pressurisée. De nos jours, la simulation de ces phénomènes transitoires rapides repose majoritairement sur des algorithmes d’intégration temporelle « explicites » car ils permettent de traiter de manière robuste et efficace ces problèmes qui sont généralement fortement non-linéaires. Malheureusement, du fait des contraintes de stabilité imposées sur les pas de temps, ces approches peinent à calculer des régimes permanents. Face à cette difficulté, dans de nombreux cas, on néglige les grandeurs cinématiques et les contraintes internes de l’état stationnaire du système considéré au moment de la survenue du phénomène transitoire simulé.

Par ailleurs, les applications visées font intervenir des structures solides en interaction avec le fluide, qui subissent de grandes déformations et peuvent éventuellement se fragmenter. Une technique de frontières immergées dite MBM (Mediating Body Method [1]) récemment développée au CEA permet de traiter de manière performante et robuste des structures à géométrie complexe et/ou subissant de grandes déformations. Cependant, ce couplage entre le fluide et la structure solide n’a été pensé que dans le cadre de phénomène transitoire « rapides » traités par des intégrateurs en temps « explicites ».

Le sujet de thèse proposé a pour objectif final d’enchaîner un calcul d’un régime nominal suivi d’un calcul transitoire dans un contexte d’interaction fluide/structure-immergée. La phase transitoire du calcul repose nécessairement sur une intégration temporelle explicite et fait intervenir la technique d’interaction fluide/structure MBM. Afin de générer un minimum de perturbations numériques lors de la transition entre les régimes nominal et transitoire, le calcul du régime nominal devra se faire sur le même modèle numérique que le calcul transitoire, et donc s’appuyer également sur une adaptation de la méthode MBM.

Des travaux récents ont permis de déterminer une stratégie efficace et robuste pour le calcul de régimes établis pour des écoulements compressibles, basée sur une intégration « implicite » en temps. Cependant, bien que générique, cette approche n’a pour le moment été éprouvée que dans le cas de gaz parfaits, et en l’absence de viscosité.

Les principaux enjeux techniques de cette thèse consistent, en se basant sur ces premiers travaux, à 1) valider et éventuellement adapter la méthodologie pour des fluides plus complexes (en particulier de l’eau), 2) introduire et adapter la méthode MBM pour l’interaction fluide-structure dans cette stratégie de calcul de régime établi, 3) introduire la viscosité du fluide, notamment dans le cadre de la méthode MBM développée initialement pour des fluide non-visqueux. A l’issue de ces travaux, des calculs de démonstration de transition implicite/explicite avec interaction fluide/structure seront mis en place et analysés.

A l’issue de la thèse, l’expérience de l’étudiant(e) pourra être valorisée vers des postes de chercheurs dans l’industrie (nucléaire, automobile, ferroviaire, aéronautique, médicale, …), et dans le réseau académique.

Un stage de fin d'études préparatoire à ces travaux de thèse peut être mis en place, selon les souhaits du candidat.

[1] Jamond, O., & Beccantini, A. (2019). An embedded boundary method for an inviscid compressible flow coupled to deformable thin structures: The mediating body method. International Journal for Numerical Methods in Engineering, 119(5), 305-333.

Modélisation/Simulation de la synthèse de revêtements anti-corrosion par procédé MOCVD pour la production d’énergie décarbonée

La durabilité des matériaux utilisés dans de nombreux domaines de production d’énergie est limitée par leur dégradation dans l’environnement de fonctionnement, environnement très souvent oxydant et à haute température. C’est notamment le cas des Electrolyseurs à Haute Température (EHT) pour la production d’hydrogène "vert" ou les gaines des combustibles des réacteurs nucléaires pour la production d’électricité. Afin d’améliorer la durée de vie de ces installations et ainsi préserver les ressources, des revêtements anti-corrosion peuvent/doivent être appliqués. Un procédé de synthèse de revêtements par voie vapeur réactive avec des précurseurs organométalliques liquides (DLI – MOCVD) apparait comme un procédé très prometteur.
L’objectif de cette thèse est de modéliser et de simuler le procédé de synthèse de revêtement par DLI-MOCVD pour les deux applications proposées ci-dessus. Les résultats des simulations (vitesse de déposition, composition du dépôt, homogénéité spatiale) seront comparés aux résultats expérimentaux réalisés sur des réacteurs « pilote » de grande échelle au CEA afin d’optimiser les paramètres d’entrée du modèle. A partir de ce dialogue simulation CFD/expériences, les conditions optimales de dépôt sur un composant échelle 1 seront proposées. Un couplage simulations CFD/Machine Learning pour accélérer le changement d’échelle et l’optimisation des dépôts à l’échelle 1 sera développé.

Top