Systèmes visuels de questions-réponses combinant un encodeur binarisé et des modèles de langage

Une des tendances majeures des imageurs intelligents est d’aller au-delà de fonctions d’inférence simple telle que la classification ou la détection d’objet. Cela peut notamment se traduire par le souhait d’ajouter des applications plus complexes permettant une compréhension sémantique de la scène. Parmi ces applications, le VQA (Visual Question Answering) permet aux systèmes d'IA de répondre à des questions, formulées avec du texte, en analysant les images. Dans ce contexte, ce sujet vise à développer un système efficace et embarqué de VQA intégrant un encodeur visuel basé sur des réseaux de neurones binaires (BNN) combiné avec un modèle de langage compact (tiny LLM). Même s’il existent encore de nombreuses étapes pour un portage matériel d’un système intégrant un LLM, ce projet représente une étape significative dans cette direction en s’appuyant sur des BNN. Cet encodeur traite des images en limitant le besoin en ressource de calcul, permettant un déploiement en temps réel sur des dispositifs embarqués. Des mécanismes d'attention seront intégrés pour extraire les informations sémantiques nécessaires à la compréhension de la scène. Le modèle de langage utilisé pourra être stocké localement et ajusté conjointement avec le BNN pour générer des réponses précises et contextuellement pertinentes.
Ce sujet de thèse offre une opportunité pour un candidat intéressé par le Tiny Deep Learning et les LLMs. Il propose un vaste champ de recherche pour des contributions significatives et des résultats intéressants pour des applications concrètes. Le travail consistera à développer une topologie de BNN robuste pour l'analyse sémantique d’une scène visuelle, en prenant en compte des contraintes matérielles (mémoire et calcul), à intégrer et à optimiser l'encodeur BNN avec le LLM, tout en assurant un système VQA cohérent et performant à travers différents types de requêtes et de cas d’usage.

Méthodes de synthèse de turbulence pour les approches hybrides CFD URANS/LES dans la simulation multi-échelle des cœurs nucléaires

Description du problème : Les interactions fluide-structure dans les coeurs de réacteurs nucléaires résultent de mécanismes se produisant à différentes échelles spatiales. L'échelle des composants représente l'écoulement global à l'intérieur du cœur et est généralement simulée par des méthodes de milieux poreux. L'échelle locale représente l'assemblage combustible : elle nécessite des méthodes de résolution d'échelle CFD pour calculer des forces fluides cohérentes sur les structures, et elle présente un certain degré de couplage fluide-structure. Dans le but d'effectuer des simulations multi-échelles d'un cœur, l'échelle locale nécessite la génération de conditions limites à partir de l'échelle des composants. Cela ne peut être réalisé que par une génération synthétique de turbulence, basée sur les résultats d'écoulement à l'échelle des composants. Cependant, l'approche des milieux poreux utilisée à l'échelle des composants ne contient pas de détails sur les quantités turbulentes : le développement de nouvelles méthodes numériques est nécessaire pour générer une turbulence synthétique cohérente dans cette configuration.
Objectifs :
1. Identifier les approches hybrides URANS/LES appropriées pour les problèmes liés aux vibrations des assemblages de combustible
2. Identifier les paramètres de turbulence disponibles dans les méthodes de milieux poreux et explorer les approches de mise à l'échelle ascendante
3. Développer une méthode de synthèse de turbulence applicable à tout ensemble de combustible à l'intérieur d'un cœur
Résultats attendus :
1. Une nouvelle approche pour l'analyse des vibrations induites par les fluides basée sur une méthode multi-échelle
2. Clarifier les paramètres clés pour générer des conditions limites résolues par turbulence appropriées dans la configuration spécifique étudiée
3. Valider les nouvelles méthodes sur les configurations expérimentales disponibles

Conception d’une expérience de validation du "crédit burnup" RNR dans le RJH

Le Réacteur nucléaire expérimental Jules Horowitz a pour mission première de répondre aux besoins d’irradiation de matériaux et combustibles pour l'industrie nucléaire actuelle et les générations ultérieures. Son démarrage est prévu autour de 2032. La conception des premières vagues de dispositifs expérimentaux du RJH est déjà très avancée, la priorité étant de répondre aux besoins industriels GEN2 et 3. En revanche, un champ reste ouvert à plus long terme, celui d’expériences indispensables à la filière GEN4, alors que l’on ne dispose pas de réacteur d’irradiation à spectre rapide.
L’objectif de la thèse est d’étudier la faisabilité d’expériences dans le RJH et d'autres réacteurs à eau, à des fins de validation de la perte de réactivité de combustibles RNR innovants.

La première partie du travail consiste à identifier et hiérarchiser les produits de fission (PF) contributeurs principaux à la perte de réactivité dans un RNR-Na typique. L'état des connaissances (données nucléaires JEFF4) sera dressé. La deuxième partie correspond à la mesure par activation et l'évaluation de la section efficace de capture des PF RNR stables en spectre rapide. Elle consiste à concevoir, spécifier, réaliser et mettre en œuvre un porte-cible PF-RNR « stables » dans le réacteur de l’ILL ou au poste de reprise du réacteur CABRI (avec écrans aux neutrons thermiques).
La troisième et dernière partie est la conception d’une expérience dans le RJH permettant de générer des PF-RNR et de les caractériser. Elle consiste à concevoir des essais d’irradiation de combustibles en conditions représentatives d’un RNR-Na, pour accéder à l’inventaire PF par spectrométrie sous eau dans le RJH et pesée intégrale de réactivité avant/après irradiation dans CABRI ou un autre réacteur disponible.

La thèse se déroule dans une équipe expérimentée dans la caractérisation neutronique et thermohydraulique du RJH.
Le/La doctorant/e sera aussi accompagné/e par plusieurs experts du département, au fur et à mesure des thématiques abordées. Il/Elle pourra valoriser ses résultats auprès de tous les partenaires de la filière (CEA, EDF, Framatome, Orano, Technicatome etc.).

Modélisation et remontée d’échelle pour un écoulement sodium en ébullition dans les cœurs de RNR

L'ébullition stabilisée dans le sodium est étudiée depuis de nombreuses années au sein du CEA afin d'améliorer la validation des outils de calcul scientifique à l’échelle globale système tels que CATHARE3. Pouvoir reproduire correctement ce phénomène est une question clé liée à la sûreté des réacteurs de 4ème génération à métal liquide (RNR-Na). Lorsqu'une perte de débit non protégée se produit dans le réacteur et que les mesures de sûreté ne sont pas déployées, le liquide de refroidissement (le sodium) peut atteindre la saturation, ce qui risque de conduire à une dégradation de l'assemblage si la convection naturelle ne s’établit pas. Afin d'éviter cette situation, de nouveaux dessins d’assemblages de combustible de RNR-Na fournissent une rétroaction neutronique globalement négative lorsque le sodium entre en ébullition. Pour étudier comment dans cette situation le sodium se comporte et évolue dans l'assemblage, il est nécessaire de modéliser correctement les transferts de quantité de mouvement, de chaleur et de masse. Les codes systèmes comme CATHARE3 couvrent ces situations mais la modélisation doit être améliorée.

Dans cette thèse, on se propose d’utiliser des simulations 3D locales CFD afin d’obtenir une meilleure compréhension des mécanismes d'ébullition du sodium en assemblage de RNR-Na. De nouveaux modèles CFD, tels que la modélisation des grandes interfaces, l'ébullition à la paroi et l'échange de chaleur et de masse à l'interface, seront utilisés pour accéder aux variables locales. Ces informations détaillées seront ensuite transférées au code système 1D via un remontage d'échelle. Une fois ces informations correctement recueillies et transférées, de nouveaux modèles seront développés et mis en œuvre dans le code système. Enfin, ces nouvelles corrélations seront confrontées aux données expérimentales de la base de validation du code CATHARE3. L'objectif final est d’accroître la confiance dans l'outil de simulation 1D CATHARE3 pour prédire l'ébullition du sodium pendant un transitoire de perte de pompe primaire.
La thèse sera développée au sein du Service d’Etudes des Systèmes Innovants au CEA/IRESNE Cadarache avec d'autres doctorants et stagiaires, dans un environnement dynamique et international. Des déplacements au CEA-Saclay et à EDF-Chatou sont prévus pendant la thèse ainsi que la participation à des conférences internationales.

Passage à l’échelle du jumeau numérique réseau dans les réseaux de communication complexes

Les réseaux de communication connaissent aujourd’hui une croissance exponentielle à la fois en termes de déploiement d’infrastructures réseau (notamment ceux des opérateurs à travers l’évolution progressive et soutenue vers la 6G), mais aussi en termes de machines, couvrant un large éventail d’équipements allant des serveurs Cloud aux composants IoT embarqués légers (ex. System on Chip : SoC) en passant par les terminaux mobiles comme les téléphones intelligents (smartphones).

Cet écosystème est aussi riche en équipements qu’en composants logiciels allant de l’application (ex. Audio/Vidéo streaming) jusqu’aux protocoles des différentes couches de communication réseau. De plus, un tel écosystème, lorsqu’il est opérationnel, se trouvera en perpétuel changement dont la nature peut être explicitée dans ce qui suit :
- Changement dans la topologie réseau : en raison, par exemple de défaillances matérielles ou logicielles, mobilité des utilisateurs, politiques de gestion des ressources réseau de l’opérateur, etc.
- Changement dans le taux d’utilisation/consommation des ressources réseau (bande passante, mémoire, CPU, batterie, etc.) : en raison des besoins des utilisateurs et des politiques de gestion des ressources réseau de l’opérateur, etc.

Pour assurer une supervision, ou plus généralement, une gestion efficace, qu'elle soit fine ou synthétique, des réseaux de communication, divers services/plateformes de gestion de réseau, tels que SNMP, CMIP, LWM2M, CoMI, SDN, ont été proposés et documentés dans la littérature sur les réseaux et organismes de normalisation. Par ailleurs, de telles plates-formes de gestion ont été largement adoptées notamment par les opérateurs réseau et par l’industrie de manière générale. D’ailleurs, cette adoption intègre souvent des fonctionnalités avancées, notamment des boucles de contrôle automatisées (par exemple, des systèmes experts ou des systèmes basés sur l’apprentissage automatique), améliorant ainsi la capacité des plateformes à optimiser les performances des opérations de gestion du réseau.

Cependant, malgré l’exploration et l’exploitation intensives des plateformes de gestion réseau, ces plateformes ne garantissent pas toujours une (re)configuration sans risque/erreur intrinsèque, dans des cas d’usage assez communs et critiques comme l’optimisation temps-réel du réseau, l’analyse de tests en mode opérationnel (what-if analysis), la planification des mises à jour/modernisations/extensions du réseau de communication, etc. Pour de tels scénarios, un nouveau paradigme de gestion réseau s’avère nécessaire.

Pour traiter les problématiques présentées dans la section précédente, la communauté scientifique a commencé à explorer l’adoption du concept de « jumeau numérique » pour les réseaux de communication, ce qui a donné naissance au paradigme du jumeau numérique réseau (Network Digital Twin : NDT). Le NDT est un jumeau numérique du réseau réel/physique (Physical Twin Network : PTN) ou l’on peut manipuler, sans risque, une copie numérique du vrai réseau, ce qui permet notamment de visualiser/prédire l’évolution (ou le comportement, l’état) du réseau réel si telle ou telle configuration réseau devait être appliquée. Au-delà de cet aspect, le NDT et le PTN échangent des informations via une ou plusieurs interfaces de communication dans le but de maintenir une bonne synchronisation entre eux.

Cependant, mettre en place un jumeau numérique réseau (NDT) n’est pas une tache simple. En effet, la synchronisation PTN-NDT fréquente et en temps réel pose un problème de passage à l’échelle (scalability) lorsqu’il est question de réseaux complexes (ex. nombre d’entités réseau trop important, topologies très dynamiques, volume important d’informations par nœud/par lien réseau), où chaque information réseau est susceptible d’être rapportée au niveau du NDT (par exemple un très grand nombre d'entités réseau, des topologies très dynamiques, ou un grand volume d'informations par nœud/par lien réseau).

Divers travaux scientifiques ont tenté de traiter la question du jumeau numérique réseau (NDT). Dans ces travaux il est question de définir des scenarios, exigences et architecture du NDT. Cependant, la question du passage à l’échelle dans le NDT n’a pas été traitée dans la littérature.

L'objectif de cette thèse de doctorat est de traiter le problème de passage à l’échelle (« scalabilité ») des jumeaux numériques réseau en explorant de nouveaux modèles d'apprentissage automatique pour la sélection et la prédiction des informations réseau.

Ecriture automatique de noyau de calculs pour calculateurs quantiques

Le cadre de la simulation hamiltonnienne ouvre une nouvelle panoplie d'approches de calcul pour l'informatique quantique. Celle-ci peut être développées dans tous les champs pertinents de l'application de l'informatique quantique, incluant, entre-autres les équations aux dérivées partielles (electro-magnétisme, mécanique des fluides, ...) mais aussi le machine learning quantique, la finance, et de nombreuses approches de résolutions de problèmes d'optimisation (heuristiques ou exactes).
Le but de la thèse est de trouver un cadre où ces approches basées sur les approches de simulation hamiltonienne ou d'encodage par bloc sont faisable et dont leur écriture peut être automatisée.
Cela peut aller jusqu'au prototypage d'un générateur de code que l'on cherchera à tester sur des cas pratiques issus de collaboration avec des partenaire européens (stage de quelques mois dans les équipes).

Compréhension et optimisation de la robustesse électrothermique des dispositifs de puissance avançés en SiC

Le carbure de silicium (SiC) est un semi-conducteur aux propriétés intrinsèques supérieures à celles du silicium pour les applications électroniques à haute température et à forte puissance. Il est anticipé que les dispositifs en SiC soient largement utilisés dans la transition vers l'électrification et les nouvelles applications de gestion de l'énergie. Pour exploiter pleinement les propriétés supérieures du SiC, les futurs dispositifs semi-conducteurs seront utilisés dans des conditions de polarisation et de températures extrêmes. Ces dispositifs doivent fonctionner en toute sécurité à des densités de courant, des dV/dt et des températures de jonction plus élevées que les dispositifs en Si.
L'objectif de cette thèse est d'étudier les dispositifs SiC fabriqués au LETI dans ces conditions de fonctionnement extrêmes, et d'optimiser leur conception pour utiliser pleinement le potentiel théorique du SiC. Le travail de thèse comprendra plusieurs phases qui seront fortement couplées :
Un volet caractérisation electro-thermique avancée (50%), en proposant de nouvelles approches de tests sur composants en boitier ou sur support adapté, en utilisant des outils d’intelligence artificielle (IA) pour l’extraction et le traitement des données. La travail inclura une adaptation des méthodologies de mesures standard aux spécificités de commutation du SiC.
Une évaluation (15%) des paramètres de conception et technologiques responsables des limites de fonctionnement des composants
Un volet caractérisation physico-chimique (15%) pour l'analyse des défaillances sous ces conditions extrêmes
Un volet d'inclusion de modèles prédictifs (20%) de sensibilité des architectures aux conditions extrêmes et aux défauts basée sur la modélisation.

Conception et optimisation de routeurs de couleurs pour capteur d’images

Les routeurs de couleur représentent une technologie prometteuse qui pourrait révolutionner le domaine des capteurs d’image. Composés de structures nanométriques appelées métasurfaces, ces dispositifs permettent de modifier la propagation de la lumière pour améliorer l’efficacité quantique des pixels. Grâce aux avancées techniques récentes, il est désormais possible de concevoir et de réaliser ces structures, ouvrant la voie à des capteurs d’image plus performants.
Le sujet de thèse porte sur la conception et l’optimisation de routeurs de couleur pour des capteurs d’images. Plusieurs pistes de recherche seront explorées, comme l’implémentation de nouvelles géométries de métasurfaces (« freeform ») ou bien des configurations innovantes dans l’objectif de réduire le pas pixel (0.5µm ou 0.6µm). Diverses méthodes d’optimisation pourront être utilisées, telles que la méthode adjointe, le machine learning ou l’utilisation de solveurs auto-différentiables. Les designs devront être résilient à l’angle d’incidence de la lumière et aux variations attendues lors de la fabrication. Après cette phase de simulation, les structures proposées seront réalisées et l'étudiant(e) aura pour mission de caractériser les puces et d’analyser les résultats obtenus (rendement quantique, fonction de transfert de modulation…).
Les activités principales de l’étudiant(e) :
- Simulation optique à l’aide de méthodes numériques (FDTD, RCWA)
- Développement de méthodologies d’optimisation pour la conception de métasurfaces (méthode adjointe, optimisation topologique…)
- Caractérisation électro-optique et analyse des données expérimentales

Electrolyte CTC solide pour le système LiS

Les batteries Lithium-Soufre (Li-S) représentent l'une des technologies de stockage d'énergie les plus prometteuses pour la cinquième génération de batteries, souvent appelée post-Li-ion. Avec une densité énergétique théorique cinq fois supérieure à celle des batteries Li-ion conventionnelles et une disponibilité abondante du soufre, le système Li-S offre un potentiel unique pour répondre aux besoins croissants en stockage d'énergie durable. Cependant, la technologie actuelle est limitée par des défis majeurs liés à la dissolution des polysulfures dans l’électrolyte, entraînant des pertes de soufre actif, entrainant une faible durée de vie en cyclage et donc des performances électrochimiques insuffisantes. Ces limitations empêchent aujourd'hui le déploiement de cette technologie sur le marché des batteries.
Cette thèse vise à explorer une voie alternative basée sur un mécanisme de conversion électrochimique du soufre entièrement en voie solide. Pour ce faire, un électrolyte solide organique de nouvelle génération développé dans le laboratoire sera implémenté. Cet électrolyte possède un mécanisme unique de conduction des ions lithium au sein d'une maille cristalline, empêchant la solubilisation des polysulfures. Les objectifs principaux seront :
1. Comprendre et maîtriser les mécanismes de conduction ionique dans ces électrolytes.
2. Intégrer cet électrolyte solide dans un système Li-S innovant.
3. Optimiser la structure de la cathode pour le mécanisme solide et évaluer les performances électrochimiques à l’échelle d’un prototype représentatif.
Le doctorant sera amené à utiliser un large éventail de techniques de caractérisation et d’analyse pour mener à bien ce projet :
• Formulation et caractérisation de l’électrolyte solide organique : Des techniques telles que FT-IR et RMN pour analyser la structure chimique et identifier les propriétés des matériaux synthétisés (DSC, ATG, DRX…).
• Caractérisation électrochimique : Analyses par spectroscopie d'impédance électrochimique (EIS), voltampérométrie cyclique (CV) et tests de cyclage symétriques pour étudier les propriétés de conduction ionique et la stabilité de l’électrolyte.
• Formulation et étude des performances de la cathode : Formulation du composites carbone/soufre et formulation de la cathode soufre intégrant l’électrolyte ; Tests de cyclage galvanostatique et analyses avancées des interfaces pour comprendre et optimiser la conversion du soufre en voie solide.
Les travaux de recherche se dérouleront en trois grandes étapes :
1. Développement et caractérisation de l’électrolyte solide : Élaboration des matériaux, analyse des mécanismes de conduction et optimisation des propriétés ioniques et mécaniques.
2. Conception et optimisation de la structure de la cathode : Amélioration des interfaces électrolyte/cathode pour une conversion solide du soufre.
3. Évaluation des performances électrochimiques : Validation expérimentale des prototypes à travers des tests approfondis, incluant la cyclabilité et les performance en puissance

Surface électromagnétique programmable aux fréquences sub-THz à base de commutateurs à matériaux à changement de phase

La conception et le développement de surfaces rayonnantes pour la formation électronique de faisceau, la modulation spatio-temporelle, la détection et la conversion de fréquence est un enjeu important pour des nombreuses applications aux fréquences sub-THz (0.1-0.6 GHz). Parmi ces applications on peut mentionner l’imagerie médicale et le contrôle industriel, l’observation de la terre et de l’espace profond, ainsi que les radars et les systèmes futurs de télécommunication très large bande. Dans ce contexte, les (Meta)Surfaces Intelligentes et Reconfigurables (RIS) sont une technologie de rupture. Leur utilisation permet de contrôler et former le rayonnement aux fréquences sub-THz de manière hybride analogique / numérique. Pour démocratiser la technologie RIS, il sera crucial de réduire sa consommation d'énergie de deux ordres de grandeur. Cependant, l'état de l'art ne répond pas aux exigences d'intégration, de modularité, de bande passante large et de haute efficacité.
Sur la base de nos résultats de recherche récents, l'objectif principal de ce projet de thèse sera de démontrer des nouvelles architectures de RIS à base de silicium à 140 GHz et 300 GHz. L'amélioration des performances du RIS THz découlera d'un choix judicieux de la technologie de fabrication et de nouvelles conceptions de méta-atomes (également appelées cellule unitaire ou élément) à large bande avec des commutateurs intégrés de type PCM (materiaux à changement de phase). La possibilité de contrôler dynamiquement l'amplitude des coefficients de transmission des méta-atomes, en plus de leur phase, sera également étudiée. Un éclairage en champ proche sera introduit pour obtenir un profil ultra-compact. A notre connaissance, cela constitue une nouvelle approche pour la conception d'antennes à gain élevé dans la gamme de fréquence sub-THz.

Top