Dévelopement d'algorithmes de trajectographie basés sur l'apprentissage machine pour le futur Upstream Tracker de LHCb au LHC

Cette proposition vise à développer et améliorer les futures performances de trajectographie de l'expérience LHCb au Grand collisionneur de hadrons (LHC) via l’étude de divers algorithmes basés sur l'apprentissage machine automatique. Parmi les systèmes de trajectographie de LHCb, le sous-détecteur Upstream Tracker (UT) joue un rôle crucial dans la réduction du taux de fausses traces reconstruites dès les premières étapes du processus de reconstruction. Dans l'optique de pouvoir mener à bien les futures études de désintégrations rares de particules, la violation CP dans le Modèle standard, et l'étude du plasma de Quark et Gluon dans les collisions Pb-Pb, une trajectographie précise dans LHCb est obligatoire.

Avec les mises à jour du détecteur prévues d'ici 2035 et l'augmentation anticipée des taux de données, les méthodes de trajectographie traditionnelles risquent de ne pas répondre aux exigences computationnelles, notamment dans les collisions noyau-noyau où des milliers de particules sont produites. Durant la thèse, nous explorerons une gamme de techniques basées sur l'apprentissage machine automatique, comme celles déjà appliquées avec succès dans le Vertex Locator (VELO) de LHCb, pour améliorer la performance de trajectographie de l'UT. En appliquant des méthodes variées, nous visons à améliorer la reconstruction des trajectoires aux premiers stades de la reconstruction, accroître l'efficacité de trajectographie et réduire le taux de fausses traces. Parmi ces techniques, les réseaux de neurones graphiques (Graph Neural Networks, GNN) représentent une option particulièrement prometteuse grâce à l'exploitation des corrélations spatiales et temporelles des hits du détecteur.

Cette exploration de nouvelles méthodes impliquera des développements adaptés au matériel hardware, qu’il s’agisse de GPU, CPU ou FPGA, tous potentiellement présent dans l'architecture de reconstruction du futur LHCb. Nous comparerons les différents algorithmes par rapport aux méthodes de trajectographie actuelles afin de quantifier les améliorations en termes de performance, de scalabilité et d'efficacité computationnelle. De plus, nous prévoyons d’intégrer les algorithmes les plus performants au sein du logiciel de LHCb de de garantir leur compatibilité avec les pipelines de données existants.

Caractérisation multi-physique pour l’amélioration des performances des supercondensateurs hybrides au potassium

Le sujet de thèse porte sur l'optimisation des supercondensateurs hybrides au potassium (KIC), qui combinent les propriétés des supercondensateurs (puissance, cyclabilité) et des batteries (énergie). Ce système, développé au CEA, représente une technologie prometteuse, bas coûts et sans matériaux critiques/stratégiques. Cependant, l’optimisation des performances nécessite encore de lever différents verrous observés lors de travaux précédents, notamment sur l’intercalation du potassium dans le graphite et les phénomènes d’échauffement de cellules en fonctionnement. Afin d'explorer en profondeur les mécanismes de fonctionnement du système KIC, une partie essentielle du projet de thèse comprendra des expériences menées à l'ESRF (European Synchrotron Radiation Facility), où des techniques de diffraction et d'imagerie avancées seront utilisées pour analyser la structure des matériaux et leur comportement en conditions réelles de fonctionnement. Le traitement des données recueillies sera également crucial afin d'établir des corrélations entres les propriétés physico-chimiques des matériaux et les performances globales du système. Cette thèse contribuera à la compréhension fondamentale des mécanismes multi-physiques en jeu dans les KIC pour développer des stratégies de conception innovantes et ainsi améliorer leur capacité, leur efficacité énergétique et leur durée de vie.

Apprentissage de Modèles Interprétables pour la Corrosion sous Contrainte des aciers inoxydables exposés en milieu primaire des REP

La corrosion sous contrainte (CSC) des aciers inoxydables est l'un des principaux phénomènes de dégradation des composants du circuit primaire des Réacteurs à Eau Pressurisée(REP). La compréhension de ce mécanisme de fissuration est d’une nécessité absolue pour la prolongation de la durée d’exploitation des réacteurs. Avec un nombre important de paramètres critiques qui influent sur la sensibilité du matériau à la CSC et la présence de forts effets de couplage, une grille d’essais expérimentaux assez conséquente est souvent envisagée pour aider à la compréhension du mécanisme. Il est proposé dans ce projet d’adopter une approche nouvelle basée sur l’utilisation de modèles interprétables, avec pour but d’éviter les longues et couteuses étapes de recherches en ciblant des essais pertinents et des paramètres matériaux pouvant améliorer les performances en environnement. L’enjeu ici sera d’ajouter à l’approche expérimentale les performances d’un outil d’intelligence artificielle avec pour objectifs de définir des domaines de sensibilité à l’amorçage de CSC en fonction des paramètres critiques identifiés dans le modèle, et de fournir des données relatives à l’élaboration de nouveaux matériaux par fabrication additive.
La thèse sera consacrée au développement d’un outil numérique adapté à ce nouveau cas d’usage et à la poursuite des activités expérimentales nécessaires à la validation de cette nouvelle approche. Il s’agira d’explorer les contributions de l’intelligence artificielle dans le domaine de la corrosion sous contrainte sur plusieurs volets : l'identification des paramètres au premier ordre sur la sensibilité du matériau, l'évaluation des domaines de criticité à la CSC et l'aide à la compréhension des mécanismes physiques à l’origine de la fissuration.

Matériaux SCO&FE par ALD pour les transistors FeFET

Le Transistor à effet de champ ferroélectriques FeFET est un composant mémoire haute densité adapté aux configurations 3D-DRAM. Le concept FeFET combine l’utilisation des oxydes semi-conducteurs comme matériau de canal et des oxydes métalliques ferroélectriques FE comme grille de transistor [1, 2, 3]. Le dépôt de couches atomiques ALD de matériaux SCO et FE à très faible épaisseur (<10 nm) et à basse température (10 cm2.Vs) ; ultra-minces (<5 nm) et ultra-conformes (rapport d'aspect 1:10). Le doctorant bénéficiera du riche environnement technique de la salle blanche 300/200 mm du CEA-LETI et de la plateforme de nano-caractérisation (analyses physico-chimiques, structurales et microscopiques, mesures électriques).
Les développements porteront sur les points suivants :
1-Comparaison de couches SCO (IGZO Indium Gallium Zinc Oxide) fabriquées par techniques ALD et PVD : mise en œuvre de techniques de mesures et de véhicules de test adaptés
2-Caractérisation intrinsèque et électrique des couches ALD-SCO (IWO, IGZO, InO) et ALD-EF (HZO) : stœchiométrie, structure, résistivité, mobilité….
3-Co-intégration de couches ALD-SCO et ALD-FE pour structures FeFET 3D verticales et horizontales

[1]10.35848/1347-4065/ac3d0e
[2]https://doi.org/10.1109/TED.2023.3242633
[3]https://doi.org/10.1021/acs.chemmater.3c02223

Modélisation physique d’une attaque laser sur FD-SOI en vue de la sécurisation des cellules standard du nœud FD-SOI 10 nm

La cybersécurité de nos infrastructures est un maillon essentiel à la transition numérique qui s’opère et la sécurité doit être assurée sur l’ensemble de la chaîne. Les couches basses, matérielles, s’appuient sur du composants microélectroniques assurant les fonctions essentielles pour l’intégrité, la confidentialité et la disponibilité des informations traitées.
Le matériel assurant des fonctions de sécurité peut être soumis à des attaques physiques, utilisant les propriétés du matériel. Certaines de ces attaques sont plus directement liées que d’autres aux caractéristiques physiques des technologies silicium utilisées pour la fabrication des composants. Parmi celles-ci, les attaques utilisant un laser impulsionnel dans l’infra rouge proche est la plus puissante par sa précision et sa répétabilité. Il convient donc de protéger les composants vis-à-vis de cette menace. En sécurité, le développement des protections (on parle aussi de contremesures) est possible quand la menace est modélisée. Si l’effet d’un tir laser dans les technologies bulk traditionnelles est bien modélisé, il ne l’est pas encore suffisamment dans les technologies FD-SOI (une seule publication). Nous savons aujourd’hui que le FD-SOI a une sensibilité moindre à un tir laser, et cela doit s’expliquer par un modèle physique sensiblement différent de celui effectif sur bulk. Or les systèmes embarqués susceptibles d’être visés par des attaques malveillantes (contexte IoT, Bancaire, Idendité etc…) sont aujourd’hui portés sur les technologies FD-SOI. Il devient donc essentiel de consolider la modélisation physique de l’effet d’un tir laser sur un transistor et sur des cellules standard (standard cells : inverseur, NAND, NOR, Flip-Flop, SRAM…). Nous proposons d’allier l’expérimental à une approche TCAD permettant une compréhension fine des effets mis en jeu lors d’un tir laser impulsionnel dans le FD-SOI. Un modèle compact d’un transistor FD-SOI sous impulsion laser sera déduit de cette phase de modélisation physique.
Ce modèle compact sera ensuite injecté dans un design de cellules standards. Cette approche a deux objectifs : porter la modélisation de l’effet d’un tir laser au niveau de design de cellules standards (absolument centrales dans les circuits numériques pour la sécurité). Des données expérimentales (existantes et générées par le doctorant) permettront de valider le modèle à ce niveau d’abstraction. Enfin, et surtout, cette modélisation fine permettra de proposer des designs de cellules standards en technologie FD-SOI 10nm, intrinsèquement sécurisées vis-à-vis d’un tir laser impulsionnel. Cela sera rendu possible par l’exploitation des propriétés de sécurité des technologies FD-SOI.

Contacts: romain.wacquez@cea.fr, jean-frederic.christmann@cea.fr, sebastien.martinie@cea.fr,

Antennes miniatures Super-gain à polarisation circulaire et dépointage électronique de faisceau

Le contrôle du rayonnement (forme, polarisation) des antennes est un élément clé pour les systèmes de communications actuels et du futur. Focaliser le rayonnement de l’antenne dans une direction privilégiée permet notamment d’adresser des applications qui nécessitent du filtrage spatial. Dans le contexte particulier de l’internet des objets (IoT) où plusieurs systèmes ou objets communicants peuvent cohabiter, le filtrage spatial amené par les antennes directives permet de favoriser la communication avec des objets sélectionnés sans perturber les systèmes environnants, puisque l’énergie est focalisée uniquement dans la direction de l’objet d’intérêt. Egalement, focaliser l’énergie rayonnée dans un secteur angulaire réduit permet de limiter les pertes d’énergie dans les autres directions et ainsi limiter la consommation et favoriser l’autonomie des batteries des objets communicants. Cependant, les techniques classiques pour améliorer la directivité du rayonnement conduisent généralement à une augmentation significative de la taille de l’antenne. Par conséquence, l’intégration d’antennes directives dans les objets communicants compacts reste limitée. Cette difficulté est particulièrement critique pour les gammes de fréquences inférieures à 3 GHz lorsqu’on vise une intégration dans des objets dont les dimensions sont de l’ordre de quelques centimètres. Des antennes avec une directivité et un gain importants, multi-bandes ou large bande, une taille réduite, à polarisation linéaire ou circulaire et avec la possibilité de dépointage électronique du faisceau sont nécessaires pour le développement de nouvelles applications dans le domaine des objets communicants. Les études récentes réalisées par le CEA ont permis la démonstration des potentialités des réseaux compacts d’antennes à élément parasites super directifs et le développement conjoint d’une expertise spécifique dans ce domaine. Les travaux de thèse se dérouleront au CEA Leti Grenoble au sein du Laboratoire Antennes Propagation et Couplage Inductif (LAPCI). Les principaux objectifs de ce travail de thèse sont : 1. Contribution au développement d’outils numériques pour la conception et l’optimisation de réseaux compacts et super directifs, super gain ou à formation de faisceau ; 2. Le développent de nouvelle sources élémentaires pour les réseaux d’antennes compacts ; 3. La réalisation d’un réseau à polarisation circulaire compact super gain et avec dépointage de faisceau. Les travaux à mener combineront études théoriques, développements de modèle et outils logiciels, conceptions par simulation électromagnétique 3D et expérimentations sur prototypes en laboratoire de métrologie des champs électromagnétiques.

Matériaux eco-conçus pour l’encapsulation des modules photovoltaïques flexibles de nouvelles générations

La durée de vie des dispositifs couches minces tel les dispositifs photovoltaïques Organiques (OPV) ou des modules Silicium (Si) photovoltaïques léger et/ou flexible de nouvelle génération est un point critique pour leur commercialisation. Il est notamment crucial de les encapsuler avec des matériaux hautement barrières aux gaz afin d’éviter leur dégradation selon différents mécanismes liés à l’insertion d’eau/oxygène qui peuvent être couplés à l’illumination. Cet objectif est d’autant plus complexe lorsque le dispositif, ainsi que son encapsulation, doivent être flexibles. Par ailleurs, l’éco-conception de cette nouvelle génération de modules flexibles amène aussi bien la question de la nature des matériaux d’encapsulation employés que celle de la fin de vie des matières constituant les modules. Par exemple, l’usage actuel de polymères fluorés pour l’encapsulation génère des produits toxiques en fin de vie et pourrait être substitué par l’usage de matériaux éco-conçus, potentiellement bio-sourcés, si les performance sont adaptées à la technologie photovoltaïque employée et à l’usage.
L’objectif de cette thèse sera tout d’abord d’étudier les propriétés physico-chimiques (barrières aux gaz, mécaniques, thermiques..) d’encapsulants bio-sourcés développés dans le cadre d’un projet national PEPR BioflexPV. Ces études concerneront aussi bien les matériaux de scellage que les capots flexibles. Par ailleurs, ces matériaux seront employés pour l’encapsulation de dispositifs réels OPV et Si flexibles afin d’en étudier la dégradation selon différentes conditions d’illumination, de température et d’hygrométrie. Ces études permettront de définir les mécanismes de dégradation mis en jeux selon la technologie photovoltaïque employée (OPV ou Si) et ainsi de définir les propriétés souhaitées pour les encapsulants bio-sourcés.

Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme

Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.

Étude d’un procédé de lavage innovant pour le traitement de composants sodés issus d’installations utilisant du sodium liquide comme caloporteur

Le sodium est utilisé comme fluide caloporteur dans les réacteurs nucléaires à neutrons rapides. Compte tenu des températures de fonctionnement de ces installations, toutes les surfaces en contact avec le sodium liquide restent mouillées par du sodium résiduel une fois les circuits vidangés et égouttés. Le traitement de ce sodium résiduel est impératif pour assurer la sécurité des interventions sur les composants et structures dans un processus de démantèlement. Le procédé de référence pour cette action est le lavage à l’eau dans un puits de lavage dédié. Ce procédé met en œuvre une réaction du sodium avec l’eau sous différentes formes, en maîtrisant la cinétique de réaction, qui est instantanée et fortement exothermique sans contrôle de la mise en contact des réactifs.
Une étude exploratoire menée au CEA a fait l’objet d’une thèse soutenue en 2014 sur l’utilisation de sels pour mitiger la cinétique de réaction. Le laboratoire d’Études des technologies Sodium et Caloporteurs avancés (DES/IRESNE/DTN/STCP/LESC) possède ainsi des installations de R&D, instrumentées et dédiées à l’étude des procédés de lavage du sodium et équipées des fonctionnalités d’un puits de lavage industriel, telles que des rampes d’aspersion, des buses d’atomisation et un dispositif d’immersion.
Le principal objectif scientifique de la nouvelle thèse proposée est à présent d’identifier, de comprendre et de modéliser les mécanismes physico-chimiques impliqués dans la cinétique réactionnelle sodium-eau en présence de sels. Ces travaux permettront de limiter ou d’éviter les phénomènes d’onde de pression ou d’explosion lors du traitement du sodium résiduel des circuits de réacteurs nucléaires à neutrons rapides lors de leur assainissement-démantèlement. Le doctorant aura pour mission de définir les plans d’expérience, de participer activement à la réalisation des campagnes d’essai, d’exploiter les résultats et de proposer une interprétation des phénomènes observés (cinétiques, pic de pression, élévation locale de température…). Les essais auront pour objectif d’acquérir des données de thermodynamique et de cinétique de réaction fiables, tels que les temps de réaction, la variation de la pression dynamique, l’élévation de la température, la composition des phases gaz et liquide, la spéciation en phase liquide et la visualisation de la phénoménologie via caméra rapide. Des outils de modélisation seront mis à sa disposition pour établir et simuler un modèle de cinétique réactionnelle. À terme, les travaux proposés permettront de qualifier le procédé pour une application industrielle dans le domaine de l’assainissement/démantèlement à fort enjeu pour la filière nucléaire française.
En complément de l’expérience acquise dans le domaine du démantèlement de systèmes nucléaires, le travail proposé ouvre des perspectives professionnelles en particulier vers les centres de recherche et les départements de R&D dans l’industrie.
Un stage de master 2 est proposé par l’équipe en complément de la thèse.

Simulation de l'évolution des microstructures de dislocations dans UO2 : impact de la montée des dislocations à haute température

La neutralité carbone passe par le développement de systèmes de production d’énergie bas carbone incluant le nucléaire. L’analyse de sûreté du fonctionnement des réacteurs nucléaires porte sur le confinement des produits de fission dans toutes les situations de fonctionnement, avec notamment l’intégrité de la première barrière composée des éléments combustibles. Pour les concepts de type crayon, constitués d’un empilement de pastilles combustibles dans une gaine métallique, le comportement mécanique des pastilles en dioxyde d'Uranium (UO2) joue un rôle important dans l'évaluation de l'intégrité de la gaine. Ainsi, en situation de transitoire de puissance, le contact combustible-gaine accroît les sollicitations mécaniques de la gaine et le fluage du combustible peut permettre une accommodation des déformations de gonflement réduisant ainsi les contraintes appliquées à la gaine. Un des enjeux porte sur la compréhension et la prédiction de ce phénomène de fluage de l’UO2 avec les mécanismes qui le pilotent à l’échelle microstructurale polycristalline, notamment impliquant les dislocations.
L’objectif de la thèse sera de construire une méthode de simulation indispensable à l’acquisition de résultats de référence en support à la modélisation multi-échelle du comportement mécanique du combustible à haute température fortement dépendant du phénomène de montée des dislocations. Ce type de démarche de simulation et les résultats qui seront obtenus seront particulièrement novateurs et n’ont encore jamais été mis en œuvre dans le cas des combustibles oxyde pour lesquels l’évolution de la microstructure de dislocation à également un impact fort sur le comportement des produits de fission gazeux en plus des aspects mécaniques étudiés dans la thèse. Pour cela le doctorant développera un schéma de calcul, basée sur le couplage entre un code de dynamique des dislocations (NUMODIS) et un code de résolution des équations aux dérivées partielles non linéaires par FFT (AMITEX-FFTP). Ceci permettra de décrire l’évolution d’une microstructure de dislocations sous l’effet de la montée des dislocations (NUMODIS) induite par la diffusion des lacunes (AMITEX-FFTP). Ensuite, des simulations basées sur cette approche permettront de quantifier les phénomènes de restauration de la densité des dislocations stockées avec l’effet des mécanismes de montée dans différentes configurations (températures, contraintes…). Ce travail permettra in fine d’améliorer et valider la modélisation micromécanique existante et mise en œuvre dans la plateforme de simulation PLEIADES du CEA.
Cette thèse sera réalisée dans le cadre d’un co-encadrement entre le Département d'Etude des Combustibles (Institut IRESNE, CEA Cadarache) et Le Département de recherche sur les Matériaux et la Physico-chimie (Institut ISAS, CEA Saclay), et d’une collaboration avec l’IM2NP d’Aix Marseille Université. Les travaux de thèse seront menés au sein des laboratoires LM2C (Cadarache) et LC2M (Saclay) dans un environnement donnant accès à une grande expertise sur la modélisation multiéchelle des matériaux. Les travaux de recherche seront valorisés par des publications et des participations à des conférences internationales dans le domaine des matériaux.

Top