Imagerie des champs de déformations dans les semi-conducteurs: du matériau au dispositif

Ce sujet traite de la visualisation et de la quantification des champs de déformation dans les matériaux semi-conducteurs, par des techniques utilisant le rayonnement synchrotron. Le contrôle de la déformation est fondamental pour optimiser les propriétés de transport électronique, mécaniques et thermiques. Dans une approche duale, nous combinerons la détermination du tenseur local de déformation déviatorique en balayant l'échantillon sous un nano faisceau polychromatique (µLaue) et une imagerie d'un champ de vu donné (microscopie aux rayons X en champ sombre, DFXM).

Des recherches originales s’intéresseront à améliorer l’analyse : (1) de la précision et de la vitesse de détermination quantitative des champs de déformation, (2) des distributions des gradients de déformation, et (3) du champ de déformation dynamique dans les matériaux piézoélectriques par des mesures stroboscopiques. Pour illustrer ces points, trois cas scientifiques correspondant à des matériaux microélectroniques pertinents et de complexité croissante seront étudiés :

1.Champs de déformation statiques entourant des contacts métalliques dans le Si, tels que les vias à travers le silicium (TSV) à haute densité dans la technologie CMOS.
2.Gradients de déformation dans des structures hétéroépitaxiales complexes Ge/GeSn avec des variations de composition le long de la direction de croissance.
3.Études de déformation dynamique de résonateurs acoustiques LiNbO3 en volume avec une fréquence de résonance dans la plage des MHz.

La validation de cette approche conceptuelle permettra une avancée significative dans le domaine de la microélectronique et l'ingénierie de déformation.

Fonctions avancées de monitoring des transistors de puissance (vers la fiabilisation et augmentation de la durée de vie des convertisseurs de puissance pour l’énergie)

Afin d’augmenter la puissance des systèmes électroniques, une approche courante est de paralléliser des composants au sein de modules. Cependant, cette parallélisation est compliquée par la dispersion des paramètres des transistors, tant initiaux que post-vieillissement. Les commutations rapides des composants WBG (semi-conducteurs à large bande interdite) nécessitent souvent des ralentissements pour éviter des suroscillations et des destructions.
Un schéma de pilotage intelligent, incluant une commande ajustée, un contrôle des paramètres internes des circuits et des dispositifs, ainsi qu'une boucle de rétroaction, pourrait améliorer la fiabilité, la durée de vie et réduire les risques de casse.
Les objectifs de la thèse seront de développer, étudier et analyser les performances de fonction de contrôle et pilotage de composants de puissance, tels le carbure de silicium (SiC) ou le nitrure de gallium (GaN), qui pourraient à terme être implémenté dans un circuit intégré dédié (type ASIC).
Ce sujet de thèse vise à résoudre des problèmes critiques dans la parallélisation de composants de puissance, contribuant ainsi à l'éco-innovation en augmentant la durée de vie des modules de puissance.

Conception d'une cathode à forte densité de courant basée sur l'émission d'électrons secondaires

Dans le cadre d'un projet innovant, le CEA/DAM travaille sur des solutions novatrices permettant l'optimisation des systèmes de mise à feu. Dans ce contexte, en collaboration avec différents centres de la DAM, vous participerez à l'ensemble des études menant à la compréhension des phénomènes physiques d'une cathode à forte densité de courant basée sur l'émission d'électrons secondaires.

Vous contribuerez à la définition et à la réalisation de l'ensemble des expérimentations menant à la preuve de concept du dispositif étudié vis à vis de l'application visée.

L'ensemble des travaux de cette thèse se dérouleront au CEA GRAMAT (46)

Sondage de circuits intégrés par faisceau électronique

La conception des circuits intégrés nécessite, en fin de chaîne, des outils d'édition de circuit et d'analyse de défaillance. Parmi ces outils, le sondage de niveaux de potentiels électriques par utilisation d'un faisceau électronique disponible dans un MEB (Microscope Electronique à Balayage) permet de connaitre le signal électrique présent dans une zone du circuit, cette zone pouvant être un niveau de métal ou un transistor. Cette technique de sondage électronique a été très utilisée dans les années 90, puis partiellement abandonnée malgré quelques publications récurrentes sur cette technique. Les dernières années ont remis au gout du jour cette technique par utilisation de la face arrière du composant, le sondage se faisant via le substrat de silicium et l'accès aux zones actives du composant.
Ces outils de débogage et d'analyse de défaillance sont aussi des outils pour attaquer les circuits intégrés. Ce sujet de thèse s'inscrit dans le cadre de la cybersécurité matérielle et notamment des risques liés aux attaques dites invasives. Le doctorant mettra en œuvre cette technique de sondage par faisceau électronique sur des MEB commerciaux et dans des conditions d'utilisation propre à la cybersécurité. Il sera envisagé différentes techniques pour améliorer les signaux sondés, pour comprendre les risques et se prémunir de leur exploitation, notamment par l'utilisation et le détournement d'un MEB de table qui rendrait l'attaque "low-cost".

Développement d’une plateforme microfluidique bioanalytique pour quantifier la bio distribution cellulaire d’un médicament

Le mode d'action d’un médicament, ainsi que son efficacité, sont corrélés non seulement à sa capacité à s’accumuler au niveau des tissus pathologiques ciblés, à savoir sa bio distribution tissulaire, mais également à atteindre spécifiquement sa cible moléculaire au sein des cellules. Une accumulation non spécifique d’un médicament dans ces cellules peut être à l’origine d’effets non-désirés, par exemple des effets secondaires lors de chimiothérapies. En d’autres termes, évaluer l’efficacité, la spécificité et l’absence de toxicité d’un médicament nécessite de déterminer précisément et de façon quantitative sa bio distribution cellulaire. Devenus incontournable en oncologie, les conjugués anticorps-médicaments (ADC) permettent une thérapie vectorisée afin de cibler préférentiellement au sein d’une tumeur un sous-ensemble de cellules tumorales exprimant l’antigène reconnu par l’anticorps.

Ces ADC ciblent des cellules tumorales spécifiques exprimant un antigène particulier, limitant ainsi la toxicité pour les tissus sains. Le marquage radioactif des médicaments (3H, 14C) est une méthode clé pour quantifier leur accumulation dans les cellules tumorales et non tumorales, afin d’évaluer la précision du ciblage et éviter les effets secondaires indésirables. Cependant, la détection des faibles émissions de tritium nécessite de nouvelles solutions technologiques. Le projet propose le développement d'une plateforme microfluidique innovante permettant de détecter et quantifier ces isotopes dans des cellules uniques. Cette approche permettra de mieux documenter la distribution des ADC dans des tissus hétérogènes et d’affiner les stratégies thérapeutiques.

Révolutionner l'intervention en milieux complexes : L'IA et les Jumeaux numériques en synergie pour des solutions innovantes et efficaces.

Contexte scientifique
L’exploitation d’équipements complexes, notamment dans le secteur nucléaire, repose sur l’accès rapide et sécurisé à des données hétérogènes. Les avancées en IA générative, combinées aux Jumeaux Numériques (JN), offrent des solutions innovantes pour améliorer les interactions humain-système. Cependant, l’intégration de ces technologies dans des environnements critiques nécessite des approches adaptées pour garantir intuitivité, sécurité et efficacité.
Travail proposé
Cette thèse propose de développer une architecture d’IA générative enrichie par des données métiers et accessible via la réalité mixte, permettant à un opérateur de boite à gants de poser des questions en langage naturel. Les travaux incluent :
1. Une revue de l’état de l’art sur la génération augmentée (RAG), les technologies ASR/TTS et les JN.
2. Le développement et l’intégration d’un chatbot pour l’exploitation nucléaire.
3. L’évaluation des interactions humain-IA et la définition de métriques d’efficacité et d’adoption.
Résultats attendus
Le projet vise à améliorer la sécurité et la productivité grâce à une interaction optimisée et à proposer des guidelines pour l’adoption de ces systèmes dans des environnements critiques.

Optimisation par Intelligence Artificielle de la Caractérisation In-Situ des Radionucléides Bêta Purs en Milieux Complexes

Avant, pendant, après… la caractérisation de l’état radiologique est essentielle à toutes les étapes du scénario de démantèlement d’une installation nucléaire. Peut-on intervenir directement sur place ou faut-il prévoir de la téléopération ? La contamination d’une zone a-t-elle été complètement éliminée ? Dans quelle catégorie classer tel ou tel déchet nucléaire afin d’optimiser sa gestion future ?
Les mesures nucléaires non destructives in-situ ont pour objectif d’évaluer en temps réel l’état radiologique des procédés et équipements d’une installation, tout en répondant à des critères d’efficacité, de sûreté, de flexibilité et de fiabilité et en réduisent les coûts grâce à des analyses rapides, précises et non invasives. Si les techniques de caractérisation des émetteurs gamma sont bien maîtrisées, celles des émetteurs bêta purs restent un défi de taille en raison du faible parcours des électrons dans la matière et du bruit gamma ambiant qui rend la détection in-situ particulièrement complexe.
L’intégration d’outils d’intelligence artificielle (IA), tels que le machine learning ou le deep learning, dans ce domaine ouvre de nouvelles perspectives. Ces technologies permettent d’automatiser l’analyse de grandes quantités de données tout en extrayant des informations complexes difficiles à interpréter manuellement, notamment pour déconvoluer des spectres continus de rayonnements bêta. Les premiers résultats obtenus dans le cadre de la thèse de L. Fleres, ont montré que l’IA peut prédire et quantifier efficacement les radionucléides émetteurs bêta présents dans un mélange. Bien que prometteuse, cette approche testée en conditions de laboratoire, doit encore être qualifiée dans des conditions réelles de terrain.
La thèse proposée vise à poursuivre et perfectionner ces développements. Elle consistera à intégrer de nouveaux algorithmes, d’explorer diverses architectures de réseaux neuronaux, et d’enrichir les bases de données d’apprentissage afin d'améliorer les performances des systèmes actuels pour la caractérisation in-situ des émetteurs bêta. Cela inclura des scénarios où le rapport signal/bruit gamma est défavorable, ou encore la détection de faibles niveaux d’activité en présence de radioactivité naturelle. D'autres axes de recherche incluront la détection des radionucléides à faible énergie et l'adaptation des outils de déconvolution à des détecteurs de grande surface.
La méthodologie de caractérisation développée à l’issue du projet présentera un fort potentiel de valorisation industrielle en particulier dans le domaine de l’assainissement et du démantèlement. Le doctorant intégrera une équipe disposant d’une riche expérience dans la mise en œuvre de techniques et méthodes de caractérisation radiologique non destructive in-situ et aura l’opportunité d’évaluer les solutions proposées sur des chantiers de démantèlement parmi les plus importants au monde.

Profil recherché : Le profil recherché est un(e) candidat(e) issu(e) d’une école d’ingénieurs ou d’un MASTER M2 avec de bonnes connaissances en mesure nucléaire en particulier des phénomènes physiques liés aux interactions des rayonnements ionisants avec la matière. Des compétences vis-à-vis des méthodes statistiques de traitement de données et en programmation informatique (Pyhton, C++) seraint également appréciées.

Simulation du comportement des poudres cohésives : lien entre l’échelle atomique et l’échelle granulaire

Le combustible nucléaire est fabriqué par un procédé de métallurgie des poudres mettant en œuvre différentes étapes de préparation du milieu granulaire (broyage, mélange), de pressage et de frittage. Les poudres mises en œuvre lors de ces étapes présente une cohésion importante entre les grains rendant son comportement à l’écoulement complexe. La prédiction du comportement de la poudre est un enjeu industriel crucial pour pouvoir s’adapter rapidement à un changement de matière première, optimiser la qualité du produit et améliorer les cadences de production.

Cette thèse vise à établir le lien entre les propriétés des poudres et leur aptitude à l'écoulement et au pressage. La cohésion entre les grains de poudre est un facteur clé influençant l'écoulement et la densification des matériaux granulaires. Elle est déterminée par plusieurs forces interparticulaires, telles que les forces de van der Waals, les interactions capillaires, et les forces électrostatiques. Comprendre ces interactions à une échelle atomique est essentiel pour prédire et modéliser le comportement des poudres. Cette thèse cherche à adresser deux questions : Comment les propriétés de surface des grains à l'échelle atomique influencent-elles la force de cohésion à l'échelle des grains composant la poudre ? Et, comment passer de l'échelle atomique à l'échelle du grain pour simuler de manière réaliste les poudres ?

Les approches de simulation multi-échelles permettent de relier les phénomènes microscopiques aux comportements macroscopiques des matériaux granulaires. Les simulations DEM (Discrete Element Method) actuelles intègrent rarement les interactions élémentaires telles que les forces de van der Waals, électrostatiques et capillaires dans les lois de contact. Des travaux de thèse récents (1) (2) ont exploré l'effet de la cohésion avec une approche simplifiée où la cohésion est prise en compte comme une force d’attraction ou une énergie de cohésion. Les méthodes de simulation de type Dynamique Moléculaire (MD) ou Coarse-graining permettent de simuler le comportement du matériau à une échelle inférieure à partir de ces propriétés structurelles et chimiques locales. Une meilleure compréhension de la cohésion à petite échelle permettra d'améliorer la prédictivité des simulations DEM et de mieux comprendre le lien entre les propriétés des poudres et leur comportement global.

L’objectif principal de cette thèse est de mieux comprendre les liens entre les interactions à l'échelle atomique et la cohésion à l'échelle des grains et d’en évaluer les conséquences pour les simulations de pressage et de l’écoulement des poudres.

L'un des principaux défis de ce projet réside dans la création de lois de contact DEM qui intègrent les interactions complexes à l'échelle atomique. Cela nécessite une collaboration étroite entre les experts en simulation atomistiques et ceux en modélisation DEM. De plus, il est crucial de valider ces modèles par des comparaisons avec des expériences et des observations afin de garantir leur précision et leur applicabilité aux procédés industriels.
Le doctorant sera accueilli au sein de l'institut IRESNE (CEA-Cadarache) dans le Laboratoire des Méthodes numériques et Composants physiques de la plateforme PLEIADES du Département d’Etude des Combustibles et collaborera avec le Laboratoire de Modélisation du Comportement des Combustibles. Il bénéficiera d’un environnement faisant appel à des outils d’investigation de pointe sur le plan de la modélisation-simulation et d’un environnement collaboratif avec Le Laboratoire de Mécanique et Génie Civil de l’Université de Montpellier.

Références
1. Sonzogni, Max. Modélisation du calandrage des électrodes Li-ion en tant que matériau granulaire cohésif : des propriétés des grains aux performances de l'électrode. s.l. : Thèse, 2023.
2. Tran, Trieu-Duy. Cohesive strength and bonding structure of agglomerates composed. 2023.

Simulations mésoscopiques et développement de modèles simplifiés pour le comportement mécanique des bétons irradiés

Dans les centrales nucléaires, le puits de cuve en béton sert de support pour la cuve du réacteur et d’écran de protection contre les radiations. A long terme, l’exposition à des radiations neutroniques peut causer une expansion des granulats du béton par amorphisation, et provoquer une microfissuration et une dégradation de ses propriétés mécaniques. Cette problématique est importante dans les études visant à prolonger la durée de vie des centrales. À l’échelle mésoscopique, ces phénomènes peuvent être modélisés en dissociant le comportement des granulats, de la matrice cimentaire, et des interfaces entre ces phases. Cependant, il est difficile de décrire l’initiation et la propagation des microfissures dans de tels systèmes multi-fissurés hétérogènes complexes. L'objectif de cette thèse, menée dans le cadre d’un projet ANR franco-tchèque, est de développer un outil de simulation numérique performant pour analyser les effets de l’irradiation neutronique sur le béton à l’échelle mésoscopique. Une approche couplée thermo-hydro-mécanique dans laquelle le comportement de la matrice prendra en compte retrait, fluage et microfissuration sera utilisée. Les simulations seront validées à partir de données expérimentales obtenues sur des échantillons testés, et l’outil numérique permettra par la suite d’estimer l’impact de différents facteurs sur le comportement et les performances du béton soumis à une irradiation neutronique.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multiphysiques et multi-échelles.

Structuration 3D complexes à base d’origamis d’ADN

L'évolution rapide des nouvelles technologies, telles que les voitures autonomes ou les énergies renouvelables, nécessite la réalisation de structures de plus en plus complexes. Pour cela, il existe aujourd’hui de nombreuses techniques de structuration de surface. En microélectronique, la lithographie optique est la méthode de référence permettant d’obtenir des motifs micro- et nanométriques. Cependant, elle reste limitée dans la diversité des formes réalisables.
Au cours des dernières années, une approche prometteuse a été développée au sein des laboratoires du CBS (INSERM à Montpellier) et CEA Leti (Grenoble) : l’assemblage des origamis d'ADN. Cette technologie exploite les propriétés d'auto-assemblage de cette chaine de polymères qu’est l’origami ADN. L’organisation des origamis d’ADN de taille nanométrique permet de former in fine des structures d’une dimension micrométrique. L'objectif de cette thèse est d'explorer de nouvelles perspectives en combinant des origamis 2D et 3D pour créer des structures inédites. Ces motifs pouvant présenter un grand intérêt pour des applications dans les domaines tel que l’optique ou encore l’énergie.

Top