Capteur quantique-radiofréquence hybridé

A travers l’action exploratoire Carnot SpectroRF, le CEA Leti s’implique dans les systèmes de capteurs radiofréquences à base de spectroscopie optique atomique. L’idée sous-jacente de ce développement repose sur le fait que ces systèmes offrent des performances de détection exceptionnelles. Avec notamment, une sensibilité´ élevée (~nV.cm-1.Hz-0.5), des bandes passantes très larges (MHz- THz), une taille indépendante de la longueur d'onde (~cm) et une absence de couplage avec l'environnement. Ces avantages surpassent les capacités des récepteurs conventionnels a` base d'antennes pour la détection des signaux RF.
L'objectif de cette thèse est d'investiguer une approche hybride pour la réception de signaux radiofréquences, en combinant une mesure de spectroscopie atomique basée sur des atomes de Rydberg avec la conception d'un environnement proche à base de métal et/ou de matériau chargé pour la mise en forme et l'amplification locale du champ, que ce soit par l'utilisation de structures résonantes ou non, ou de structures focalisantes.
Dans le cadre de ces travaux, la question scientifique principale consiste à déterminer les opportunités et limites de ce type d’approche en formulant analytiquement les limites de champs imposables aux atomes de Rydberg, que ce soit en valeur absolue, en fréquence ou dans l’espace, et cela pour une structure donnée. L’approche analytique sera agrémentée de simulations EM pour la conception et la modélisation de la structure associée au banc de spectroscopie optique atomique. La caractérisation finale se fera par mesure dans un environnement électromagnétique contrôlé (chambre anéchoïque).
Les résultats obtenus permettront d'effectuer une comparaison modèle-mesures. Les modélisations analytiques ainsi que les limites théoriques qui en découlent donneront lieu à des publications sur des sujets qui n’ont pas encore fait l'objet d'investigations dans l’état de l’art. Les structures développées dans le cadre de ces travaux de thèse pourront faire l'objet de brevets directement valorisables par le CEA.

Le stockage des batteries à 0 V – Un avantage stratégique pour les batteries Na-ion ?

La technologie de batteries Na-ion, récemment déployée à l’échelle commerciale, démontre un excellent comportement lors de stockage de moyenne ou longue durée à une tension nulle. Cette caractéristique est offre de nombreux avantage pour la sécurité lors du transport, de l'assemblage et du stockage des cellules et modules, ainsi que lors de la mise en sécurité en cas de problème externe… Mais est-elle vraiment sans conséquence sur les performances des batteries ?
Le projet de recherche vise à étudier et mieux comprendre les mécanismes électrochimiques en jeu lorsque la différence de potentiel aux bornes est maintenue à 0 V. Dans un premier temps, des techniques avancées de caractérisation dynamique seront utilisées pour analyser et comparer les caractéristiques électrochimiques, thermiques et mécaniques des matériaux. Les résultats permettront d'enrichir les modèles de vieillissement calendaire et en cyclage à l'échelle de la cellule.
Ensuite, des essais sur des mini-modules de batteries assemblées en différentes architectures électriques seront réalisés pour étudier le comportement des cellules lors du cyclage et du vieillissement, notamment sous l'influence de la mise à tension négative. Des solutions de gestion de batterie (BMS) spécifiques pourront être proposées pour gérer ces aspects.
La démarche scientifique consistera en la mise en œuvre de techniques de caractérisation et d’instrumentation avancées, la conduite d’essais de vieillissement et de sécurité, pour l’identification de mécanismes et l’élaboration de modèles de vieillissement. Cette démarche s’appuiera sur l’expertise et les moyens d’essais du CEA-Liten sur le site du Bourget du Lac (Savoie).

Conception et caractérisation d’une PLL en technologie FD-SOI 28 nm

L’objectif de cette thèse est la conception d’une boucle à verrouillage de phase pour une utilisation générique à 5 GHz. Cette boucle à verrouillage de phase devra également être accompagnée d’une étude de la sensibilité des différents blocs aux effets radiatifs et thermiques du milieu spatial. Il s’agit là du point central de la thèse car une intégration d’une boucle à verrouillage de phase utilisée dans un environnement sévère nécessite une connaissance fine du comportement des paramètres du circuit. Le candidat commencera par analyser les travaux sur la technologie FD-SOI (caractéristique de la structure et impact sur la tenue radiative) pour se les approprier et proposer une architecture de boucle à verrouillage de phase. Il étudiera également de quelle façon caractériser les dérives des performances de chacun des blocs constituant la PLL (boucle à verrouillage de phase) en milieu sévère (radiatif et température).

Silicium supraconducteur et détection pour l'observation astrophysique en infrarouge lointain

Les technologies silicium occupent aujourd’hui une place centrale dans le domaine du numérique, tant pour la fabrication de composants semiconducteurs que pour la réalisation de capteurs avancés. En 2006, la découverte de la supraconductivité dans le silicium fortement dopé au bore et activé par recuit laser a ouvert un nouveau champ de recherche. Depuis, plusieurs laboratoires, dont le CEA, explorent ses propriétés électroniques et ses potentialités. Ce matériau émergent présente en effet des caractéristiques particulièrement attractives pour des applications opérant à des températures cryogéniques sub-Kelvin, notamment dans les domaines de l’électronique quantique et des détecteurs ultra-sensibles utilisés en physique fondamentale et en astrophysique.
Malgré ces avancées, la compréhension du silicium supraconducteur fortement dopé en Bore reste encore limitée, en particulier concernant ses propriétés thermiques, mécaniques et optiques à l’échelle micronique. La thèse proposée vise à combler ces lacunes en combinant modélisation, conception, fabrication technologique et caractérisation cryogénique de dispositifs prototypes, dans le cadre d’une collaboration étroite entre le CEA-Léti et le CEA-Irfu. L’objectif principal sera de développer une nouvelle génération de détecteurs fondés sur ce matériau supraconducteur et d’en démontrer la pertinence pour la détection du rayonnement électromagnétique dans les gammes térahertz et infrarouge lointain.

Préconditionnement hybride CPU–GPU pour les simulations éléments finis sur architectures exascale

Les supercalculateurs exascale reposent sur des architectures hétérogènes combinant des CPU et des GPU, ce qui rend nécessaire une refonte des algorithmes numériques afin d’exploiter pleinement l’ensemble des ressources disponibles. Dans les simulations par éléments finis à grande échelle, la résolution des systèmes linéaires au moyen de solveurs itératifs et de préconditionneurs de type multigrille algébrique (AMG) constitue encore un goulet d’étranglement majeur en termes de performance.

L’objectif de cette thèse est d’étudier et de développer des stratégies de préconditionnement hybrides adaptées à ces systèmes hétérogènes. Le travail visera à analyser comment les techniques multiniveaux et AMG peuvent être structurées pour utiliser efficacement à la fois les CPU et les GPU, sans restreindre les calculs à un seul type de processeur. Une attention particulière sera portée à la distribution des données, au placement des tâches et aux interactions CPU–GPU au sein des solveurs multiniveaux.

D’un point de vue numérique, la recherche portera sur l’analyse et la construction des opérateurs multiniveaux, incluant les hiérarchies de grilles, les opérateurs de transfert inter-niveaux et les procédures de lissage, exécutés sur les CPU et les GPU disponibles. L’impact de ces choix sur la convergence, les propriétés spectrales et la robustesse des méthodes itératives préconditionnées sera étudié. Des critères mathématiques guidant la conception de préconditionneurs hybrides efficaces seront établis et validés sur des problèmes représentatifs en éléments finis, par exemple pour des applications en sismologie à l’échelle régionale.

Ces développements seront couplés à des stratégies de décomposition de domaine et de parallélisation adaptées aux architectures hétérogènes. Une attention particulière sera accordée aux transferts de données CPU–GPU, à l’utilisation de la mémoire et à l’équilibre entre noyaux liés au calcul et liés à la bande passante mémoire. L’interaction entre les choix numériques et les contraintes matérielles, telles que les hiérarchies mémoire CPU et GPU, sera conçue et développée afin d’assurer des implémentations scalables et efficaces.

Développement d'une approche macroscopique pour la dégradation à long terme des structures en béton sous irradiation

Dans les centrales nucléaires, la protection biologique en béton (CBS) est conçue à proximité de la cuve du réacteur. Cet élément, qui joue également le rôle de structure porteuse, absorbe donc les radiations. Il est ainsi exposé pendant la durée de fonctionnement de la centrale à des niveaux élevés de radiations qui peuvent avoir des conséquences à long terme. Ces radiations peuvent notamment entraîner une diminution des propriétés mécaniques des matériaux et de la structure. Etant donné son rôle clé, il est donc nécessaire de développer des outils et des modèles, pour prédire les comportements de telles structures à l'échelle macroscopique.
Sur la base des résultats existants obtenus à une échelle inférieure - simulations mésoscopiques, à partir desquelles une meilleure compréhension de l'effet de l'irradiation peut être obtenue, et des résultats expérimentaux qui viendront alimentés la simulation (propriétés des matériaux en particulier), il est proposé de développer une méthodologie macroscopique pour le comportement de la protection biologique en béton. Cette approche inclura différents phénomènes, parmi lesquels l'expansion volumétrique induite par le rayonnement, le fluage induit, les déformations thermiques et le chargement mécanique.
Les outils seront développés dans le cadre de la mécanique de l'endommagement. Les principaux défis numériques concernent la proposition et l'implémentation de lois d'évolution adaptées, et en particulier le couplage entre l'endommagement microstructural et l'endommagement au niveau structurel dû aux contraintes appliquées sur la structure.
Ce travail numérique pourra être réalisé dans un contexte de collaboration internationale. Il permettra au candidat retenu de développer un ensemble de compétences autour de la simulation de structures en béton armé en environnement complexe.

Introduction de matériaux innovants pour la réalisation de contacts pour les nœuds avancés

Les développements du module contact dans le cadre de FAMES mettent en évidences les limites atteintes par les dimensionnels adressés. Pour les nœuds sub 10nm, une approche en rupture est nécessaire pour pallier aux problèmes de sélectivité, auto alignement, capa parasite… Cette thèse se positionne sur le développement de nouveaux matériaux à gradient résolvant ces problèmes.

Matériaux d'électrode avancées par ALD pour les composants ioniques

L’objectif principal des travaux de thèse est de développer des couches conductrices par la technique ALD (Atomic Layer Deposition) à très faible épaisseur (<10nm) avec des fonctionnalités d’électrodes (très faible résistivité 100). L’autre challenge vise à réduire l’épaisseur des couches à moins de 5nm tout en préservant les propriétés électriques très avancées (résistivité de quelques mOhm). Le travail de thèse comporte plusieurs aspects incluant le procédé et les précurseurs ALD, la caractérisation des couches intrinsèques (physico-chimiques, électrochimique et morphologique) ainsi que l’intégration en dispositif 3D.

Développement d'un nouveau schéma, basé sur la T-coercivité, pour discrétiser les équations de Navier-Stokes.

Dans le code TrioCFD, la discrétisation des équations de Navier-Stokes conduit à une résolution en trois étapes (cf. Chorin'67, Temam'68) : prédiction de la vitesse, résolution de la pression, correction de la vitesse. Si on veut utiliser un schéma de discrétisation en temps implicite, l'étape de résolution de la pression est particulièrement coûteuse. Ainsi, la plupart des simulations sont effectuées à l'aide d'un schéma en temps explicite, pour lequel le pas de temps dépend du pas du maillage, ce qui peut être fortement contraignant. On aimerait élaborer un schéma de discrétisation en temps implicite, en utilisant une formulation stabilisée du problème de Navier-Stokes basée sur la T-coercivité explicite (cf. Ciarlet-Jamelot'25). Il serait alors possible de résoudre directement un schéma implicite sans étape de correction, ce qui pourrait améliorer notablement les performances des calculs. Cela permettrait également d'utiliser la paire éléments finis P1-P0, économe en terme de degrés de liberté, mais instable pour une formulation classique.

Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique

Au-delà de 40 GWd/tU, la périphérie des pastilles développe une microstructure spécifique appelée High Burnup Structure (HBS), caractérisée par la subdivision des grains initiaux en grains très fins d’environ 0,2 µm. À plus fort burnup, des sous-grains apparaissent également au centre, où la température est plus élevée. Ces transformations résultent de l’action combinée des dommages produits par les produits de fission, dont les pertes d’énergie varient entre contributions électroniques et nucléaires. Les pertes électroniques peuvent générer des traces et des réarrangements de dislocations, tandis que les pertes nucléaires créent des défauts interstitiels et lacunaires tels que boucles de dislocations ou bulles. L’effet couplé de ces mécanismes entraîne notamment un grossissement plus rapide des boucles et une diminution du dommage mesuré en spectroscopie Raman, dépendant possiblement de l’orientation cristalline.

Pour mieux comprendre ces phénomènes, des irradiations par faisceaux d’ions sur matériaux modèles, UO2 monocristallin, seront réalisées afin de déterminer le rôle de l’orientation cristalline. Les plateformes JANNuS-Saclay et MOSAIC permettront des irradiations en simple ou double faisceau afin d’étudier séparément et conjointement les pertes d’énergie nucléaire et électronique. Les échantillons seront caractérisés par RBS, NRA en mode canalisé, spectroscopie Raman (in situ et ex situ), ainsi que ponctuellement par microscopie électronique en collaboration avec le CEA Cadarache. Des expériences sur synchrotron pourront compléter l’étude pour analyser l’évolution des contraintes.

Top