Modélisation gyrocinétique de l'interaction non linéaire entre les instabilités induites par les particules énergétiques et la microturbulence dans les plasmas de tokamak
Les plasmas de tokamak sont des systèmes fortement non linéaires et hors équilibre thermodynamique, dans lesquels coexistent des instabilités de tailles très différentes, allant des grandes oscillations macroscopiques à la microturbulence. La présence d’ions énergétiques produits par les réactions de fusion ou par le chauffage auxiliaire renforce ces instabilités via des résonances ondes-particules. La microturbulence est responsable du transport de chaleur et de particules du plasma thermique, tandis que les instabilités induites par les particules énergétiques peuvent produire leur transport radial et, donc, leurs pertes. Ces deux phénomènes dégradent les performances des plasmas de tokamaks actuels et potentiellement aussi celles des plasmas en combustion comme dans ITER.
Des résultats récents montrent cependant que ces instabilités, longtemps étudiées séparément, peuvent interagir non-linéairement et conduire in fine à une amélioration inattendue du confinement du plasma.
L’objectif du projet est d’étudier ces interactions multi-échelles à l’aide du code gyrocinétique GTC, capable de simuler simultanément turbulence et instabilités de particules énergétiques. Ce travail vise à mieux comprendre les mécanismes non linéaires gouvernant le confinement et à identifier des régimes optimaux pour les futurs plasmas de fusion.
Simulation numérique de modèles de turbulence sur des maillages déformés
La turbulence joue un rôle important dans de nombreuses applications industrielles (écoulement, transfert de chaleur, réactions chimiques). Comme la simulation directe (DNS) est souvent d’un coût excessif en temps calcul, les modèles en moyenne de Reynolds (RANS) sont alors utilisés dans les codes de CFD (computational fluid dynamics). Le plus connu, qui a été publié dans les années 70, est le modèle k – e. Il se traduit par deux équations additionnelles non-linéaires couplées aux équations de Navier-Stokes, décrivant le transport, pour l’une, de l’énergie cinétique turbulente (k) et, pour l’autre, de son taux de dissipation (e). Une propriété très importante à vérifier est la positivité des paramètres k et e qui est nécessaire pour que le système d’équations modélisant la turbulence reste stable. Il est donc crucial que la discrétisation de ces modèles préserve la monotonie. Les équations étant de type convection-diffusion, il est bien connu qu’avec des schémas classiques linéaires (Eléments finis, Volumes finis etc…), les solutions numériques sont susceptibles d’osciller sur des mailles déformées. Les valeurs négatives des paramètres k et e sont alors à l’origine de l’arrêt de la simulation. Il s’avère donc nécessaire de rendre monotone les schémas linéaires classiques de la littérature de manière consistante et stable.
Nous nous intéressons aux méthodes non linéaires permettant d’obtenir des stencils compacts. Pour des opérateurs de diffusion, elles reposent sur des combinaisons non linéaires de flux de part et d’autre de chaque arête. Ces approches ont montré leur efficacité, particulièrement pour la suppression d’oscillations sur des maillages très déformés. On pourra également reprendre les idées proposées dans la littérature, où il est par exemple décrit des corrections non linéaires s’appliquant sur des schémas linéaires classiques.
L’idée serait donc d’appliquer ce type de méthode sur les opérateurs diffusifs apparaissant dans les modèles k-e. Dans ce contexte, il sera également intéressant de transformer des schémas classiques de la littérature approchant les gradients en schémas non linéaires à deux points. Des questions fondamentales doivent être examinées dans le cas de maillages généraux à propos de la consistance et de la coercivité des schémas étudiés.
Au cours de la thèse, on prendra le temps de régler les problèmes de fond de ces méthodes (première et seconde année), à la fois sur les aspects théoriques et sur la mise en œuvre informatique. Cette dernière pourra être effectuée dans les environnements de développement Castem, Trust/TrioCFD ou POLYMAC. On s’intéressera alors à des solutions analytiques régulières et aux cas d’application représentatifs de la communauté.
Schéma décalé pour les équations de Navier-Stokes avec des mailles de forme générale
La simulation des équations de Navier-Stokes demande de disposer de méthodes numériques précises et robustes prenant en compte des opérateurs de diffusions, des termes de gradient et de convection. Les approches opérationnelles ont montré leur efficacité sur des simplexes. Cependant, dans certaines modélisations ou certains codes (TrioCFD, Flica5), il peut être utile d’améliorer localement la précision des solutions à l’aide d’un estimateur d’erreur ou bien de prendre en compte des mailles de forme générale.
Rappelons que nous nous intéressons ici à des schémas décalés. Cela signifie que la pression est calculée au centre des mailles et les vitesses sur les arêtes (ou les faces) du maillage. On obtient alors des méthodes naturellement précises à bas nombre de Mach.
De nouveaux schémas ont été présentés récemment dans ce contexte et ont montré leur robustesse et leur précision. Cependant, ces discrétisations peuvent être très coûteuses en place mémoire et en temps calcul en comparaison aux schémas MAC sur des maillages réguliers.
Nous nous intéressons aux méthodes de type « gradient ». Certaines d’entre elles reposent sur une formulation variationnelle avec des inconnues de pression aux centres des mailles et des inconnues de vecteur vitesse sur les arêtes (ou les faces) des cellules. Cette approche a montré son efficacité, particulièrement en termes de robustesse.
Notons également qu’un algorithme avec les mêmes degrés de libertés que les méthodes MAC a été proposé et donne des résultats prometteurs.
L’idée serait donc de combiner ces deux approches, à savoir la méthode « gradient » avec les mêmes degrés de libertés que les méthodes MAC. Dans un premier temps, on s’attachera à retrouver les schémas MAC sur les maillages réguliers. Des questions fondamentales doivent être examinées dans le cas de maillages généraux : stabilité, consistance, conditionnement du système à inverser, verrouillage numérique.
On pourra également essayer de retrouver les gains en précisions obtenus à l’aide des méthodes pour discrétiser les gradients de pression.
Au cours de la thèse, on prendra le temps de régler les problèmes de fond de cette méthode (première et seconde année), à la fois sur les aspects théoriques et sur la mise en oeuvre informatique. Cette dernière pourra être effectuée dans les environnements de développement Castem, Trust/TrioCFD, ou POLYMAC. On s’intéressera alors aux cas d’application représentatifs de la communauté.
Optimisation topologique multi-matériaux robuste sous contrainte de fabricabilité appliquée au design d’aimant supraconducteur pour les IRMs haut champ
Les scanners IRM sont des outils très précieux pour la médecine et la recherche, dont le fonctionnement repose sur l'exploitation des propriétés des noyaux atomiques plongés dans un champ magnétique statique très intense. Celui-ci est généré, dans la quasi-totalité des scanner IRM, par un électroaimant supraconducteur.
La conception des électroaimants pour les IRM doit répondre à des contraintes très exigeantes sur l'homogénéité du champ produit. De plus, à mesure que le champ magnétique devient plus intense, les forces s'exerçant sur l'électroaimant augmentent et font émerger le problème de la tenue mécanique des bobinages. Enfin, la « fabricabilité » de l'électroaimant impose des contraintes sur les formes des solutions acceptables. La conception des électroaimants supraconducteurs pour les IRM demande donc un effort minutieux d'optimisation du design, soumise à des contraintes basée sur une modélisation multiphysique magnéto-mécanique.
Une nouvelle méthodologie innovante d'optimisation topologique multiphysique a été développée, sur la base d'une méthode à densité (SIMP) et d'un code de calcul par éléments finis. Celle-ci a permis de produire des designs d'aimants satisfaisant les contraintes sur l'homogénéité du champ magnétique produit et sur la tenue mécanique des bobinages. Toutefois, les solutions obtenues ne sont pas fabricables en pratique, tant du point de vue de la fabricabilité des bobines (enroulements des câbles) que de son intégration avec une structure portante (maintien des bobines par une structure en acier).
L'objectif de cette thèse est d'enrichir la méthode d'optimisation topologique amorcée en formalisant et en implémentant des contraintes de fabrication liées à manière de bobiner, aux contraintes résiduelles résultant d'une pré-tension des câbles au bobinage, et également à la présence d'un matériau de structure pouvant reprendre les efforts transmis par les bobines.
Modélisation de la Condensation en Paroi et des Interactions avec le Film Liquide
Dans cette thèse, on s’intéresse à la modélisation des transferts de masse et d’énergie associés à la condensation pariétale pour un écoulement turbulent d’un mélange de vapeur et de gaz incondensables. L’écoulement est diphasique, en régime turbulent, où les modes de convection forcée, mixte et naturelle peuvent être rencontrés. Le cadre de ce travail est l’approche RANS des équations de Navier–Stokes compressibles, où la condensation en paroi sera décrite par des fonctions de paroi semi-analytiques développées dans un précédent travail de thèse cite{iziquel2023}. Ces fonctions intègrent les différents modes de convection ainsi que les phénomènes d’aspiration et d’interdiffusion des espèces, mais négligent la présence du film liquide.
Dans la littérature, l’effet de la formation et de l’écoulement du film liquide sur les transferts de masse et d’énergie est souvent négligé, car on considère qu’en présence de gaz incondensables, la résistance de la couche gazeuse à la diffusion de la vapeur est nettement plus importante que la résistance thermique du film liquide.
L’objectif de cette thèse est d’améliorer la prédiction des transferts thermique et massique par l’investigation, au-delà de la résistance thermique du condensat, de l’effet dynamique du liquide et de son interaction avec la couche gazeuse de diffusion lors de la condensation pariétale, en considérant d’abord un écoulement de film laminaire, puis en tentant de prendre en compte le régime turbulent.
Dans la phase gazeuse, le modèle de fonctions de paroi développé dans la thèse de A. Iziquel (2023) pour un mélange binaire de vapeur et d’un gaz incondensable sera étendu aux mélanges de vapeur et de $n>1$ gaz incondensables (N2, H2, …) afin de traiter la thématique du risque hydrogène.
La validation des modèles implantés sera effectuée sur la base de résultats d’expériences à effets séparés (SET) et à effets couplés (CET) disponibles dans la littérature (Huhtiniemi, COPAIN, ISP47-MISTRA, ISP47-TOSQAN, RIVA). Les comparaisons à l’échelle CFD, avec des fonctions de paroi pour la condensation négligeant le film sur des cas tests de la littérature et des expériences de condensation (COPAIN), permettront d’évaluer l’impact de cette hypothèse ainsi que l’apport de la nouvelle modélisation en termes de précision et de coût de calcul.
Conception et développement d’algorithmes asynchrones pour la résolution de l’équation du transport des neutrons sur des architectures massivement parallèles et hétérogènes
Cette proposition de thèse s’inscrit dans le cadre de la résolution numérique d’équations aux dérivées partielles par le biais d’une discrétisation des variables. Elle s’intéresse, dans un formalisme d’éléments finis, à travailler sur la conception d’algorithmes au travers de modèles de programmation parallèle et asynchrone pour la résolution de ces équations.
Le cadre industriel applicatif est la résolution de l’équation de Boltzmann appliquée au transport des neutrons dans le cœur d’un réacteur nucléaire. Dans ce contexte, beaucoup de codes modernes de simulations’appuient sur une discrétisation par éléments finis (plus précisément, un schéma Galerkin discontinu décentré amont) pour des maillages cartésiens ou hexagonaux du domaine spatial. L’intérêt de ce travail de thèse prolonge des travaux précédents pour explorer leur extension dans un cadre d’architecture distribuée qui n’ont pas été abordé jusque-là dans notre contexte. Il s’agira de coupler des stratégies algorithmiques et numériques pour la résolution du problème à un modèle de programmation qui expose du parallélisme asynchrone.
Ce sujet s’inscrit dans le cadre de la simulation numérique des réacteurs nucléaires. Ces simulations multiphysiques coûteuses requièrent le calcul du transport des neutrons en cinétique qui peuvent être associées à des transitoires de puissance violents. La stratégie de recherche adopté pour cette thèse permettra de gagner en coût de calcul, et alliée à un modèle massivement parallèle, peut définir les contours d’un solveur neutronique efficace pour ces problèmes multiphysiques.
Un travail réussi dans le cadre de cette thèse permettra à l’étudiant de prétendre à un poste de recherche en simulation et analyse numérique de problèmes physiques complexes, par-delà la seule physique des réacteurs nucléaires.
Mécanismes de communications unidirectionnelles pour la décomposition de données des applications de transport de particules Monte-Carlo
Dans le cadre d’un calcul Monte-Carlo d’évolution d’un cœur de REP (réacteur à eau pressurisée), il est nécessaire de calculer un très grand nombre de taux de réaction neutron-noyau, impliquant un volume de données pouvant dépasser la capacité mémoire d’un nœud de calcul sur les supercalculateurs actuels. Dans le cadre de Tripoli-5, les architectures à mémoire distribuée ont été identifiées comme cible pour le déploiement de calcul à haute performance. Pour exploiter de telles architectures il convient donc d’utiliser des approches de décomposition de données, notamment sur les taux de réaction. Toutefois, avec une méthode de parallélisation classique, les processus n’ont pas d’affinité particulière pour les taux qu’ils hébergent localement ; au contraire, chaque taux reçoit des contributions de manière uniforme de tous les processus. Les accès aux données décomposées peuvent s’avérer coûteux quand ces derniers imposent une utilisation intensive des communications. Toutefois, des mécanismes de communications unidirectionnelles comme par exemple les MPI RMA (Message Passing Interface, Remote Memory Access) permettent de faciliter ses accès aussi bien en termes d’expressions que de performances.
L’objectif de cette thèse est de proposer une méthode de décomposition partielle de données en s’appuyant sur des mécanismes de communications unidirectionnelles pour accéder aux données stockées à distance, telles que les taux de réaction. Une telle approche permettra de réduire considérablement le volume de donnée stocké en mémoire sur chaque nœud de calcul sans engendrer une forte dégradation des performances.
Modélisation des phénomènes thermo-aérauliques dans la tuyère plasma du procédé ELIPSE
Le procédé ELIPSE (Élimination de LIquides par Plasma Sous Eau) est une technologie innovante dédiée à la minéralisation des effluents organiques. Il repose sur la génération d’un plasma thermique en immersion totale dans une enceinte réacteur remplie d’eau, permettant d’obtenir des températures très élevées et des conditions réactives favorables à la décomposition complète des composés organiques.
Le travail de thèse proposé a pour objectif le développement d’un modèle numérique multi-physique décrivant le comportement du procédé, en particulier dans la tuyère plasma, zone clé où le jet gazeux à haute température issu de la torche interagit avec les liquides injectés.
La démarche reposera sur la modélisation thermo-aéraulique couplée, intégrant la dynamique des écoulements, les transferts thermiques, les changements de phase et la turbulence. L’utilisation d’outils de simulation numérique (CFD) permettra de caractériser les mécanismes d’interaction plasma/liquide et d’optimiser la géométrie et les conditions opératoires du procédé. Cette modélisation sera confrontée et validée par des expérimentations complémentaires, réalisées sur le procédé ELIPSE, afin d’acquérir les données nécessaires à la calibration et à la validation du modèle numérique.
Ces travaux s’inscrivent en complément de recherches antérieures ayant conduit à l’élaboration de modèles du comportement thermique et hydraulique de la torche plasma et de l’enceinte réacteur. L’intégration du modèle développé au sein de cet ensemble permettra d’aboutir à une représentation globale et cohérente du procédé ELIPSE. Une telle approche constitue une étape déterminante en vue de l’optimisation du procédé et de son passage à l’échelle industrielle.
Le profil recherché pour ce projet est celui d’un(e) étudiant(e) en dernière année de master ou d’école d’ingénieur, issu(e) d’une formation en génie des procédés et/ou en simulation numérique, disposant d’un goût prononcé pour la modélisation.
Au cours de cette thèse, le doctorant développera et renforcera ses compétences en modélisation numérique multi-physique, en simulation CFD avancée et en analyse thermo-aéraulique de procédés complexes. Il acquerra également une solide expérience dans le traitement des déchets, thématique en plein essor au niveau industriel et environnemental. Ces compétences offriront de réelles opportunités professionnelles dans les domaines de la recherche appliquée, de l’ingénierie des procédés, de l’énergie et de l’environnement.
Développement d'un estimateur hybride CPU-GPU pour le transport neutronique : vers une simulation Monte Carlo plus efficace
Des jumeaux numériques intégrant des modèles de simulation Monte Carlo sont en développement pour la conception, l’exploitation et le démantèlement d’installations nucléaires. Ces jumeaux sont capables de prédire des grandeurs physiques telles que les flux de particules, les échauffements gamma/neutrons ou les débits d’équivalent de dose. Cependant, la méthode Monte Carlo présente un inconvénient majeur : un temps de calcul élevé pour obtenir une variance acceptable. Pour améliorer l’efficacité des simulations, l’estimateur eTLE a été développé et intégré au code Monte Carlo TRIPOLI-4®. Comparé à l’estimateur classique TLE (Track Length Estimator), l’eTLE offre une variance théorique plus faible, notamment dans les milieux fortement absorbants, en apportant des contributions au détecteur sans que la particule ne l’atteigne. Cependant, son coût computationnel reste encore élevé, surtout lorsqu’on souhaite évaluer plusieurs détecteurs.
Dans deux thèses récentes, deux variantes ont été développées pour surmonter cette limite. Le Forced Detection eTLE- (Guadagni, EPJ Plus 2021) utilise un échantillonnage préférentiel qui oriente les pseudo-particules vers le détecteur à chaque collision. Il est particulièrement efficace pour les petits détecteurs et les configurations avec blindages modérés, notamment pour les neutrons rapides. Le Split Exponential TLE (Hutinet & Antonsanti, EPJ Web 2024) repose sur une approche GPU asynchrone, externalisant le transport en ligne droite des particules sur processeur graphique. Grâce à un échantillonnage multiple, il maximise l’usage du GPU et permet une exploration plus efficace de l’espace des phases.
La thèse proposée vise à combiner ces deux approches dans un estimateur hybride nommé seTLE-DF. Ce nouvel estimateur pourra être utilisé soit directement, soit pour générer des cartes d’importance sans recourir à des calculs auxiliaires avec des codes déterministes. Sa mise en œuvre nécessitera des développements spécifiques sur GPU, notamment pour optimiser la bibliothèque géométrique et la gestion mémoire dans des géométries complexes.
Ce sujet s’inscrit dans le cadre de l’informatique verte, visant à réduire l’empreinte carbone du calcul haute-performance. Il repose sur une approche hybride CPU-GPU, évitant le portage complet du code Monte Carlo sur GPU. Des solutions telles que l’utilisation du format demi-précision seront envisagées et une évaluation de l’impact énergétique avant et après implémentation sera réalisée. Le futur docteur sera accueilli au sein de l'Institut IRESNE (CEA Cadarache). Il pourra acquérir des compétences solides en simulation neutronique, facilitant son intégration dans les grands organismes de recherche ou les entreprises du secteur nucléaire.
Quel couplage mécanique-thermique pour les transitoire rapides ? Evaluation des apports de la Thermodynamique des Processus Irréversibles
Le Laboratoire d'Analyse de la MIgration des Radioéléments (LAMIR) au sein de l'Institut de REcherche sur les Systèmes Nucléaires (IRESNE) du CEA Cadarache a développé un ensemble de méthodes de mesure pour caractériser le relâchement des produits de fission hors du combustible nucléaire lors d'un transitoire thermique. Pour ces transitoires, il est important de simuler les sollicitations mécaniques associées aux variations de température qui peuvent générer la fracturation des échantillons de combustible testés. Dans cette thèse on s'intéresse à la modélisation de transitoires de puissance accidentels hypothétiques très rapides. L'objectif de la thèse sera de mettre en œuvre une nouvelle modélisation basée sur la thermodynamique des processus irréversibles (TPI).
La première partie de la thèse consistera à conforter l'écriture du couplage thermomécanique en TPI, qui a été proposée dans notre laboratoire (https://www.mdpi.com/2813-4648/3/4/33). Il s'agira là d'une approche essentiellement analytique pour mettre en place les ordres de grandeurs des différents mécanismes mis en jeu. La seconde partie consistera à appliquer ce formalisme à des résultats expérimentaux obtenus lors d'expériences de chauffage rapide avec des faisceaux laser. Une des difficultés de la simulation numérique avec la TPI consiste à calculer simultanément les champs de température et de contrainte , et non plus successivement comme c'est le cas dans les modélisations actuelles. On commencera par une programmation 1D (sous python ou autre)que l'on améliorera au fur et à mesure. La comparaison des résultats obtenus par TPI et par la modélisation actuelle permettra d'identifier les situations où il est nécessaire de prendre en compte les couplages spécifiques à la TPI pour avoir une prédiction de bonne qualité.
Le thésard bénéficiera du soutien d'experts en thermodynamique, en mécanique et en programmation. Ses travaux donneront lieu à des publications scientifiques présentées à des conférences. De part la diversité des domaines concernés, ce sujet de thèse est une bonne ouverture pour un futur professionnel tant dans l'industrie que dans la recherche académique.