Modélisation des phénomènes thermo-aérauliques dans la tuyère plasma du procédé ELIPSE
Le procédé ELIPSE (Élimination de LIquides par Plasma Sous Eau) est une technologie innovante dédiée à la minéralisation des effluents organiques. Il repose sur la génération d’un plasma thermique en immersion totale dans une enceinte réacteur remplie d’eau, permettant d’obtenir des températures très élevées et des conditions réactives favorables à la décomposition complète des composés organiques.
Le travail de thèse proposé a pour objectif le développement d’un modèle numérique multi-physique décrivant le comportement du procédé, en particulier dans la tuyère plasma, zone clé où le jet gazeux à haute température issu de la torche interagit avec les liquides injectés.
La démarche reposera sur la modélisation thermo-aéraulique couplée, intégrant la dynamique des écoulements, les transferts thermiques, les changements de phase et la turbulence. L’utilisation d’outils de simulation numérique (CFD) permettra de caractériser les mécanismes d’interaction plasma/liquide et d’optimiser la géométrie et les conditions opératoires du procédé. Cette modélisation sera confrontée et validée par des expérimentations complémentaires, réalisées sur le procédé ELIPSE, afin d’acquérir les données nécessaires à la calibration et à la validation du modèle numérique.
Ces travaux s’inscrivent en complément de recherches antérieures ayant conduit à l’élaboration de modèles du comportement thermique et hydraulique de la torche plasma et de l’enceinte réacteur. L’intégration du modèle développé au sein de cet ensemble permettra d’aboutir à une représentation globale et cohérente du procédé ELIPSE. Une telle approche constitue une étape déterminante en vue de l’optimisation du procédé et de son passage à l’échelle industrielle.
Le profil recherché pour ce projet est celui d’un(e) étudiant(e) en dernière année de master ou d’école d’ingénieur, issu(e) d’une formation en génie des procédés et/ou en simulation numérique, disposant d’un goût prononcé pour la modélisation.
Au cours de cette thèse, le doctorant développera et renforcera ses compétences en modélisation numérique multi-physique, en simulation CFD avancée et en analyse thermo-aéraulique de procédés complexes. Il acquerra également une solide expérience dans le traitement des déchets, thématique en plein essor au niveau industriel et environnemental. Ces compétences offriront de réelles opportunités professionnelles dans les domaines de la recherche appliquée, de l’ingénierie des procédés, de l’énergie et de l’environnement.
Développement d'un estimateur hybride CPU-GPU pour le transport neutronique : vers une simulation Monte Carlo plus efficace
Des jumeaux numériques intégrant des modèles de simulation Monte Carlo sont en développement pour la conception, l’exploitation et le démantèlement d’installations nucléaires. Ces jumeaux sont capables de prédire des grandeurs physiques telles que les flux de particules, les échauffements gamma/neutrons ou les débits d’équivalent de dose. Cependant, la méthode Monte Carlo présente un inconvénient majeur : un temps de calcul élevé pour obtenir une variance acceptable. Pour améliorer l’efficacité des simulations, l’estimateur eTLE a été développé et intégré au code Monte Carlo TRIPOLI-4®. Comparé à l’estimateur classique TLE (Track Length Estimator), l’eTLE offre une variance théorique plus faible, notamment dans les milieux fortement absorbants, en apportant des contributions au détecteur sans que la particule ne l’atteigne. Cependant, son coût computationnel reste encore élevé, surtout lorsqu’on souhaite évaluer plusieurs détecteurs.
Dans deux thèses récentes, deux variantes ont été développées pour surmonter cette limite. Le Forced Detection eTLE- (Guadagni, EPJ Plus 2021) utilise un échantillonnage préférentiel qui oriente les pseudo-particules vers le détecteur à chaque collision. Il est particulièrement efficace pour les petits détecteurs et les configurations avec blindages modérés, notamment pour les neutrons rapides. Le Split Exponential TLE (Hutinet & Antonsanti, EPJ Web 2024) repose sur une approche GPU asynchrone, externalisant le transport en ligne droite des particules sur processeur graphique. Grâce à un échantillonnage multiple, il maximise l’usage du GPU et permet une exploration plus efficace de l’espace des phases.
La thèse proposée vise à combiner ces deux approches dans un estimateur hybride nommé seTLE-DF. Ce nouvel estimateur pourra être utilisé soit directement, soit pour générer des cartes d’importance sans recourir à des calculs auxiliaires avec des codes déterministes. Sa mise en œuvre nécessitera des développements spécifiques sur GPU, notamment pour optimiser la bibliothèque géométrique et la gestion mémoire dans des géométries complexes.
Ce sujet s’inscrit dans le cadre de l’informatique verte, visant à réduire l’empreinte carbone du calcul haute-performance. Il repose sur une approche hybride CPU-GPU, évitant le portage complet du code Monte Carlo sur GPU. Des solutions telles que l’utilisation du format demi-précision seront envisagées et une évaluation de l’impact énergétique avant et après implémentation sera réalisée. Le futur docteur sera accueilli au sein de l'Institut IRESNE (CEA Cadarache). Il pourra acquérir des compétences solides en simulation neutronique, facilitant son intégration dans les grands organismes de recherche ou les entreprises du secteur nucléaire.
Quel couplage mécanique-thermique pour les transitoire rapides ? Evaluation des apports de la Thermodynamique des Processus Irréversibles
Le Laboratoire d'Analyse de la MIgration des Radioéléments (LAMIR) au sein de l'Institut de REcherche sur les Systèmes Nucléaires (IRESNE) du CEA Cadarache a développé un ensemble de méthodes de mesure pour caractériser le relâchement des produits de fission hors du combustible nucléaire lors d'un transitoire thermique. Pour ces transitoires, il est important de simuler les sollicitations mécaniques associées aux variations de température qui peuvent générer la fracturation des échantillons de combustible testés. Dans cette thèse on s'intéresse à la modélisation de transitoires de puissance accidentels hypothétiques très rapides. L'objectif de la thèse sera de mettre en œuvre une nouvelle modélisation basée sur la thermodynamique des processus irréversibles (TPI).
La première partie de la thèse consistera à conforter l'écriture du couplage thermomécanique en TPI, qui a été proposée dans notre laboratoire (https://www.mdpi.com/2813-4648/3/4/33). Il s'agira là d'une approche essentiellement analytique pour mettre en place les ordres de grandeurs des différents mécanismes mis en jeu. La seconde partie consistera à appliquer ce formalisme à des résultats expérimentaux obtenus lors d'expériences de chauffage rapide avec des faisceaux laser. Une des difficultés de la simulation numérique avec la TPI consiste à calculer simultanément les champs de température et de contrainte , et non plus successivement comme c'est le cas dans les modélisations actuelles. On commencera par une programmation 1D (sous python ou autre)que l'on améliorera au fur et à mesure. La comparaison des résultats obtenus par TPI et par la modélisation actuelle permettra d'identifier les situations où il est nécessaire de prendre en compte les couplages spécifiques à la TPI pour avoir une prédiction de bonne qualité.
Le thésard bénéficiera du soutien d'experts en thermodynamique, en mécanique et en programmation. Ses travaux donneront lieu à des publications scientifiques présentées à des conférences. De part la diversité des domaines concernés, ce sujet de thèse est une bonne ouverture pour un futur professionnel tant dans l'industrie que dans la recherche académique.
Impact de la magnétohydrodynamique sur l’accès et la dynamique des régimes d’opération avec point X rayonnant (XPR)
L'opération d'ITER et de futures centrales à fusion devra en particulier garantir la pérennité des composants face au plasma (CFP) équipant le divertor, cet élément périphérique dédié à l'extraction de la chaleur et des particules. Dans ce cadre, deux facteurs clés sont à prendre en compte : les flux de chaleur devront rester en dessous des limites technologiques à la fois en stationnaire et lors d'évènements transitoires violents. Un régime d'opération récemment développé satisfait ces deux contraintes : le point X rayonnant (XPR). Les expériences sur plusieurs tokamaks, notamment sur WEST qui détient le record de durée plasma dans ce régime (> 40 secondes), ont montré qu'il conduisait à une réduction drastique des flux de chaleur sur les CFP en transférant l'essentiel de l'énergie du plasma aux photons et aux particules neutres, et par ailleurs mitigeait – voire supprimait – des instabilités magnétohydrodynamiques (MHD) de bord particulièrement délétères, les ELMs (edge localised modes). Les mécanismes gouvernant ces mitigation et suppression restent très mal compris. En outre, le XPR peut s'avérer lui-même instable et conduire à une disruption, la perte brutale du confinement du plasma suite au déclenchement d'instabilités MHD globales.
L'objectif de cette thèse est double : (i) comprendre la physique à l'œuvre dans l'interaction XPR-ELMs, et (ii) optimiser l'accès et la stabilité du régime XPR. Pour ce faire, l'étudiant.e utilisera le code à 3-dimensions de MHD non-linéaire JOREK, la référence Européenne dans le domaine. Il s'agira notamment de préciser les limites du domaine opérationnel stable du XPR avec des ELMs faibles ou absents, et d'identifier les actuateurs principaux (quantité et espèces d’impuretés injectées, géométrie du plasma). Une participation aux campagnes expérimentales du tokamak WEST opéré au CEA de Cadarache – et de MAST-U opéré par l'UKAEA – est également envisagée pour confronter les résultats et prédictions des simulations aux mesures expérimentales.
Modèle de microémulsion : Vers la prédiction des procédés d’extraction liquide-liquide
Cette thèse de modélisation multi-échelle vise à développer des approches théoriques et des outils numériques innovants pour prédire les procédés d’extraction des métaux stratégiques, indispensables à la transition énergétique. Parmi les méthodes existantes, l’extraction liquide-liquide est un procédé clé, mais ses mécanismes sous-jacents restent encore mal compris. Pour répondre à ces enjeux, les phases solvants seront représentées par des microémulsions, grâce à une synergie d’approches de modélisation mésoscopiques et moléculaires.
Le volet mésoscopique reposera sur le développement d’un code basé sur la théorie des microémulsions utilisant une base d’ondelettes aléatoires. Ce code permettra de caractériser les propriétés structurales et thermodynamiques des solutions. L’approche moléculaire s’appuiera sur des simulations de dynamique moléculaire classique pour évaluer les propriétés de courbure des extractants nécessaires au passage entre les deux échelles.
Le nouveau code de calcul performant intégrera potentiellement des techniques d’intelligence artificielle pour accélérer la minimisation de l’énergie libre du système, tout en prenant en compte l’ensemble des espèces chimiques présentes avec un minimum de paramètres. Cela ouvrira la voie à de nouvelles pistes de recherche, notamment à travers la prédiction de la spéciation et le calcul des instabilités thermodynamiques dans les diagrammes de phase ternaires, permettant ainsi d’identifier des conditions expérimentales encore inexplorées.
Cette thèse, menée au Laboratoire de Modélisation Mésoscopique et Chimie Théorique à l’Institut de Chimie Séparative de Marcoule, aura des applications dans le domaine du recyclage, mais également dans le domaine des nanosciences, élargissant ainsi l’impact de ces travaux.
Le/La doctorant(e), de formation initiale en chimie-physique, chimie théorique ou physique, et ayant un fort intérêt pour la programmation, sera encouragé(e) à valoriser ses résultats scientifiques par des publications et des communications lors de conférences nationales et internationales. A l’issue de la thèse, le/la candidat(e) aura acquis un large éventail de compétences en chimie théorique, modélisation, calcul numérique et chimie-physique, lui offrant de nombreuses opportunités professionnelles, tant en recherche académique qu’en R&D industrielle.
Modélisation multiphysique du frittage du combustible nucléaire : effet de l’atmosphère sur la cinétique du retrait
Les combustibles de dioxyde d’uranium (UO2), utilisés dans les centrales nucléaires sont des céramiques, dont le frittage en phase solide est une étape-clé de la fabrication. L’étape de frittage consiste en un traitement thermique sous pression partielle contrôlée de O2 permettant de consolider, densifier le matériau et faire grossir les grains de UO2. Le grossissement des grains induit la densification du matériau (fermeture des pores) et le retrait macroscopique de la pastille. Si le compact (poudre comprimée par pressage avant le frittage) admet de fortes hétérogénéités de densité, une différence de densification dans la pastille peut avoir lieu entraînant un retrait différentiel et l’apparition de défauts. De plus, l'atmosphère de frittage, c'est-à-dire la composition du gaz dans le four, impacte la cinétique de grossissement des grains et donc le retrait de la pastille. Ainsi, une simulation avancée permettrait d'améliorer la compréhension des mécanismes observés ainsi que d'optimiser les cycles de fabrication.
Cette thèse se consacre à la mise en place d’un modèle thermique-chimique-mécanique du frittage pour simuler l’impact de la composition et les propriétés physiques de l’atmosphère sur la densification du combustible à l’échelle de la pastille. Cette échelle nous permettra de considérer les gradients de densité issus du pressage, mais également de prendre en compte la cinétique de diffusion d’oxygène impactant localement la vitesse de densification qui elle-même impactera le processus de transport. Une simulation multiphysique est nécessaire pour simuler le couplage de ces phénomènes.
Ce travail de thèse sera mené au sein du Laboratoire commun MISTRAL (Aix-Marseille Université/CNRS/Centrale Marseille et l'institut IRESNE du CEA-Cadarache). Le doctorant valorisera ses résultats au travers de publications et participations à des congrès et aura acquis de solides compétences qui sont recherchées et valorisables dans un grand nombre de domaines académiques et industriels.
Formation des magnétars : de l’amplification à la relaxation des champs magnétiques les plus extrêmes
Les magnétars sont les étoiles à neutrons arborant les plus forts champs magnétiques connus dans l’Univers, observées comme des sources galactiques de haute énergie. La formation de ces objets figure parmi les scénarios les plus étudiés pour expliquer certaines des explosions les plus violentes : les supernovae superlumineuses, les hypernovae et les sursauts gamma. Notre équipe a réussi au cours des dernières années à reproduire numériquement des champs magnétiques d’une intensité comparable à celle des magnétars en simulant des mécanismes d'amplification dynamo qui se développent dans les premières secondes après la formation de l’étoile à neutrons. La plupart des manifestations observationnelles des magnétars nécessitent cependant que le champ magnétique survive sur des échelles de temps bien plus longues (de quelques semaines pour les supernovae superlumineuses à des milliers d’années pour les magnétars galactiques). Cette thèse consistera à développer des simulations numériques 3D de relaxation du champ magnétique initialisées à partir de différents états dynamo calculés précédemment par l’équipe, en les prolongeant vers des stades plus tardifs après la naissance de l’étoile à neutrons lorsque la dynamo n’est plus active. L’étudiant.e déterminera ainsi comment le champ magnétique turbulent généré dans les premières secondes va évoluer pour éventuellement atteindre un état d’équilibre stable, dont on cherchera à caractériser la topologie et à le confronter aux observations électromagnétiques.
Magnéto-convection des étoiles de type solaire: émergence du flux et origine des taches stellaires
Le Soleil et les étoiles de type solaire possèdent un magnétisme riche et variable. Nous avons pu mettre en évidence dans nos travaux récents sur les dynamos turbulentes convectives de ce type d' étoiles, une histoire magnéto-rotationelle de leur évolution séculaire. Les étoiles naissent active avec des cycles magnétiques courts, puis en décélérant par le freinage du à leur vent de particules magnétisé, leur cycle magnétique s'allonge pour devenir commensurable à celui du Soleil (d'une durée de 11 ans) et enfin pour les étoiles vivant suffisamment longtemps finir avec une perte de cycle et une rotation dite anti-solaire (équateur lent/poles rapides). L'accord avec les observations est excellent mais il nous manque un élément essentiel pour conclure: Quel role jouent les taches solaires/stellaires dans l'organisation du magnétisme de ces étoiles et sont-elles nécessaires à l'apparition d'un cycle magnétique, ce qui s'appelle "le paradox des dynamos cycliques sans tache". En effet, nos simulations HPC de dynamo solaire n'ont pas la résolution angulaire pour résoudre les taches et pourtant nous observons bien des cycles dans nos simulation de dynamos stellaires pour des nombres de Rossby < 1. Dès lors les taches sont-elle une simple manifestations de surface d'une auto-organisation interne du magnétisme cyclique de ces étoiles, ou jouent-elle un rôle déterminant. De plus, comment l'émergence de flux en latitude et la taille et intensité des taches se formant à la surface évoluent ils au cours de l'évolution magnéto-rotationelle de ces étoiles? Pour répondre à cette question essentielle en magnétisme des étoiles et du Soleil, il faut développer de nouvelles simulations HPC de dynamo stellaire en soutien aux missions spatiales Solar Orbiter et PLATO pour lesquelles nous sommes directement impliqués, permettant de s'approcher plus près de la surface et ainsi de mieux décrire le processus d'émergence de flux magnétique et la possible formation de taches solaires. Des tests récents montrant que des concentrations magnétiques inhibant la convection de surface localement se forment ab-initio dans des simulations avec un nombre de Reynolds magnétique plus grand et une convection de surface plus petites échelles nous encourage fortement à poursuivre ce projet au delà de l'ERC Whole Sun (finissant en Avril 2026). Grace au code Dyablo-Whole Sun que nous co-développons avec le IRFU/Dedip, nous désirons étudier en détails la dynamo convective, l'émergence de flux magnétique et la formation auto-cohérente de taches résolues, en utilisant sa capacité de raffinement de maillage adaptative et en variant les paramètres globaux stellaire comme le taux de rotation, l'épaisseur de la zone convective, et l'intensité de la convection de surface, afin de déterminer comment leur nombre, morphologie et latitude d'émergence changent et s'ils contribuent ou non à la fermeture de la boucle dynamo cyclique.
Inférence des paramètres cosmologiques à l’aide de prédictions théoriques des statistiques en ondelettes.
Lancé en 2023, le satellite Euclid observe le ciel dans les longueurs d'onde optiques et infrarouges pour cartifier la structure à grande échelle de l'Univers avec une précision inédite. Un pilier fondamental de sa mission est la mesure du cisaillement gravitationnel faible — de subtiles distorsions dans la forme des galaxies lointaines. Ce phénomène constitue une sonde cosmologique puissante, capable de retracer l'évolution de la matière noire et d'aider à distinguer les théories sur l'énergie noire de celles de la gravité modifiée. Traditionnellement, les cosmologues analysent les données de cisaillement faible à l'aide de statistiques du second ordre (comme le spectre de puissance) couplées à un modèle de vraisemblance gaussien. Cette approche établie rencontre cependant des défis significatifs :
- Perte d'information : Les statistiques du second ordre ne capturent toute l'information disponible que si la distribution de matière sous-jacente est gaussienne. En réalité, la toile cosmique est une structure complexe, composée d'amas, de filaments et de vides, ce qui rend cette approche intrinsèquement incomplète.
- Covariance complexe : La méthode nécessite l'estimation d'une matrice de covariance, qui est à la fois dépendante de la cosmologie et non-gaussienne. Ceci exige de réaliser des milliers de simulations numériques de type N-corps, extrêmement coûteuses en calcul, pour chaque modèle cosmologique, un effort souvent prohibitif.
- Effets systématiques : L'intégration des complications observationnelles — telles que les masques de survey, l'alignement intrinsèque des galaxies, et les effets de rétroaction baryonique — dans ce cadre théorique est notoirement difficile.
Face à ces limitations, un nouveau paradigme a émergé : l'inférence sans vraisemblance par modélisation directe (forward modelling). Cette technique contourne le besoin d'une matrice de covariance en comparant directement les données observées à des observables synthétiques générés par un modèle direct (forward model). Ses avantages sont profonds : elle élimine le fardeau de stockage et de calcul lié aux vastes ensembles de simulations, intègre naturellement l'information statistique d'ordre supérieur, et permet d'inclure de manière transparente les effets systématiques. Cependant, cette nouvelle méthode présente ses propres obstacles : elle demande des ressources de calcul (GPU) immenses pour traiter des surveys de l'envergure d'Euclide, et ses conclusions ne sont aussi fiables que les simulations sur lesquelles elle s'appuie, ce qui peut mener à des débats circulaires si les simulations et les observations divergent.
Une percée récente (Tinnaneni Sreekanth, 2024) ouvre une voie prometteuse. Ces travaux fournissent le premier cadre théorique permettant de prédire directement les principales statistiques en ondelettes des cartes de convergence — exactement le type de cartes qu'Euclide produira — pour un jeu de paramètres cosmologiques donné. Il a été démontré dans Ajani et al. (2021) que la norme L1 des coefficients en ondelettes est extrêmement puissante pour contraindre les paramètres cosmologiques. Cette innovation promet d'exploiter la puissance des statistiques non-gaussiennes avancées sans le surcoût computationnel traditionnel, ouvrant potentiellement la voie à une nouvelle ère de cosmologie de précision.
Nous avons démontré que cette prédiction théorique peut être utilisée pour construire un émulateur hautement efficace (Tinnaneni Sreekanth et al., 2025), accélérant considérablement le calcul de ces statistiques non-gaussiennes. Il est crucial de noter qu'à son stade actuel, cet émulateur ne fournit que la statistique moyenne et n'inclut pas la variance cosmique. En l'état, il ne peut donc pas encore être utilisé seul pour une inférence statistique complète.
Objectif de cette thèse de doctorat:
Cette thèse de doctorat vise à révolutionner l'analyse des données de cisaillement faible en construisant un cadre complet et intégré pour l'inférence cosmologique sans vraisemblance. Le projet commence par adresser le défi fondamental de la stochasticité : nous calculerons d'abord la covariance théorique des statistiques en ondelettes, fournissant une description mathématique rigoureuse de leur incertitude. Ce modèle sera ensuite intégré dans un générateur de cartes stochastiques, créant ainsi des données synthétiques réalistes qui capturent la variabilité intrinsèque de l'Univers.
Pour garantir la robustesse de nos résultats, nous intégrerons une suite complète d'effets systématiques — tels que le bruit, les masques observationnels, les alignements intrinsèques et la physique baryonique — dans le modèle direct. Le pipeline complet sera intégré et validé au sein d'un cadre d'inférence basée sur les simulations, en testant rigoureusement sa capacité à retrouver des paramètres cosmologiques non biaisés. L'aboutissement de ce travail sera l'application de notre outil validé aux données de cisaillement faible d'Euclide, où nous exploiterons l'information non-gaussienne pour poser des contraintes compétitives sur l'énergie noire et la gravité modifiée.
References
V. Ajani, J.-L. Starck and V. Pettorino, "Starlet l1-norm for weak lensing cosmology", Astronomy and Astrophysics, 645, L11, 2021.
V. Tinnaneri Sreekanth, S. Codis, A. Barthelemy, and J.-L. Starck, "Theoretical wavelet l1-norm from one-point PDF prediction", Astronomy and Astrophysics, 691, id.A80, 2024.
V. Tinnaneri Sreekanth, J.-L. Starck and S. Codis, "Generative modeling of convergence maps based in LDT theoretical prediction", Astronomy and Astrophysics, 701, id.A170, 2025.
Modélisation d'une diode magnonique basée sur la non-réciprocité des ondes de spin dans les nanofils et les nanotubes
Ce projet de doctorat porte sur le phénomène émergent de non-réciprocité des ondes de spin dans les fils magnétiques cylindriques, de leurs propriétés fondamentales jusqu'à leur exploitation pour la réalisation de dispositifs à base de diodes magnoniques. Des expériences préliminaires menées dans notre laboratoire SPINTEC sur des fils cylindriques, avec une aimantation axiale dans le cœur et azimutale à la surface du fil, ont révélé un effet asymétrique géant (courbes de dispersion asymétriques avec des vitesses et des périodes différentes pour les ondes se propageant vers la gauche et vers la droite), créant même une bande interdite pour une direction de mouvement donnée, liée à la circulation de la magnétisation (vers la droite ou vers la gauche). Cette situation particulière n'a pas encore été décrite théoriquement ni modélisée, ce qui constitue un terrain inexploré et prometteur pour ce projet de doctorat. Pour modéliser la propagation des ondes de spin et dériver les courbes de dispersion pour un matériau donné, nous prévoyons d'utiliser divers outils numériques : notre logiciel micromagnétique 3D par éléments finis feeLLGood et le logiciel 2D open source TetraX dédié aux calculs de modes propres et spectres associés. Ce travail sera mené en étroite collaboration avec des expérimentateurs, dans le but à la fois d'expliquer les résultats expérimentaux et d'orienter les futures expériences et les axes de recherche.