Électrolytes solides hybrides pour batteries "tout solide" : Formulation et caractérisation multi-échelle du transport ionique

Les batteries lithium-ion, largement présentes dans notre vie quotidienne, ont révolutionné les applications portables et sont maintenant utilisées dans les véhicules électriques. Le développement de nouvelles générations de batteries pour les futures applications dans le transport et le stockage d'électricité à partir de sources renouvelables est donc vital pour atténuer le réchauffement climatique.
La technologie lithium-ion est généralement considérée comme la solution privilégiée pour les applications nécessitant une haute densité d’énergie, alors que la technologie sodium-ion est particulièrement intéressante pour des applications qui requièrent de la puissance. Néanmoins, l’instabilité intrinsèque des électrolytes liquides entraîne des problèmes de sécurité.

Face aux exigences de respect de l’environnement et de sécurité, les batteries tout solide à base d’électrolytes solides peuvent apporter une solution efficace tout en répondant aux besoins accus de stockage d’énergie. Les verrous à lever pour permettre le développement de la technologie batterie "tout solide" résident essentiellement dans la recherche de nouveaux électrolytes solides chimiquement stables et ayant de bonnes performances électriques, électrochimiques et mécaniques. Dans cet objectif, ce projet de thèse vise à développer des électrolytes solides composites « polymère/polymère » et « polymère/céramique » ayant une performance élevée et une sécurité renforcée. Des caractérisations par spectroscopie d’impédance électrochimique (EIS) seront réalisées afin de comprendre la dynamique cationique (par Li+ ou Na+) à l’échelle macroscopique dans les électrolytes composites, tandis que la dynamique locale sera sondée à l'aide de techniques avancées de RMN à l'état solide (relaxation du 23Na/7Li, RMN 2D, RMN in-situ & operando). D’autres techniques de caractérisation comme la Diffraction des rayons X et des neutrons, l’XPS, la chronoampérométrie, le GITT…seront mises en œuvre pour une parfaite compréhension de la structure des électrolytes ainsi que des mécanismes de vieillissement aux interfaces électrolyte/électrolyte et électrolyte/électrode de la batterie tout solide.

Mots clés : électrolyte solide composite, batterie tout solide, interfaces, caractérisation multi-échelle, dynamique des ions Li+ et Na+, performance électrochimique, RMN du solide, diffraction RX/neutrons.

Développement de nouveaux matériaux d’anode pour les batteries potassium-Ion

Les batteries Li-ions actuelles utilisées dans les applications hautes énergies sont principalement composées d’une anode en graphite et d’une cathode contenant un oxyde lamellaire lithié de formule LiNixMnyCozO2. Le développement et la généralisation de l’automobile électrique va engendrer une tension notable sur certains éléments chimiques déjà considérés comme critiques ou qui tendent à le devenir (lithium, nickel, cobalt et cuivre). De plus, le mode de production de ces matériaux s’avère être très énergivore (multiples calcinations) et met en œuvre des solvants/produits peu respectueux de l’environnement (NMP, ammoniaque). La thèse que nous proposons ici a pour but de développer une technologie de batterie basée sur le potassium, n’utilisant aucun élément critique et dont la production permettrait de réduire considérablement l’empreinte écologique.
La possibilité d’utiliser du graphite comme matériau d’anode a souvent été reportée dans la littérature comme un avantage de la technologie potassium ion vis-à-vis de la technologie sodium ion. Cependant, l’insertion du potassium en charge dans l’électrode négative engendre une expansion volumique du graphite de l’ordre de 60% et peut limiter la durée de vie de la batterie.
Le sujet de thèse proposé a pour but d’étudier et de solutionner ce problème selon deux axes de recherche : 1- meilleure compréhension du lien entre les spécificités des graphites et les performances électrochimiques associées afin de sélectionner le meilleure grade et 2- recherche de nouveaux matériaux d'anode permettant d'insérer réversiblement le potassium.

Modèle physique du vieillissement des batteries Li-ion

Depuis quelques années, les batteries Li-ions sont devenues la technologie de référence pour le marché mondial des batteries, et elles ont supplanté les anciennes technologies Nickel-Cadmium et Alcalines. Bien que légèrement inférieures aux énergies fossiles en terme de capacité énergétique massique, les batteries Li-ion possèdent un atout de poids pour le développement du véhicule électrique : leur exceptionnelle durée de vie. Il a été récemment démontré que certaines technologies de véhicules électriques peuvent franchir le seuil du million de km parcourus. Au delà des performances prometteuses obtenues sur des systèmes modèles, la question de la durée de vie des batteries est liée à des enjeux industriels, économiques et environnementaux cruciaux pour la transition écologique et la souveraineté énergétique de notre pays.

L'une des difficultés majeures pour le développement de ces batteries à très longue durée de vie est de savoir anticiper et contrôler les différents phénomènes de dégradation internes à la batterie, lors de son usage réel. Bien que la plupart des phénomènes de dégradation ont été identifiés en laboratoire sur les matériaux les plus courant, la question de leur cinétique dans une batterie complète en usage réel reste ouverte, de même que la prédiction de l'état de santé et de la fin de vie des batterie.

Les équipes du CEA s'appuient sur une expertise unique combinant données expérimentales et la modélisation afin de bâtir un modèle physico-chimique prédictif de la dégradation des batteries Li-ion. Dans le cadre de cette thèse, vous serez amené à concevoir et réaliser en laboratoire des expériences de caractérisation élémentaires sur les mécanismes de dégradation des batteries, en utilisant un large spectre de techniques expérimentales poussées (titration électrochimique, spectroscopie d'impédance, mesures de gaz operando, DRX, etc...) Votre travail vous amènera également à intégrer vos résultats dans les modèles de vieillissement et à étudier les prédictions et la validation de ces modèles.

Analyse in situ par spectroscopie RMN MAS de batteries Li-ion

La résonance magnétique nucléaire à l'état solide (ssNMR) in situ est un outil de caractérisation précieux pour comprendre les réactions électrochimiques lors du fonctionnement d'une batterie. Cependant, les larges signaux obtenus en condition statique empêchent souvent d'exploiter totalement le potentiel de la caractérisation par RMN. Des expériences ssNMR ex situ, utilisant la rotation d'échantillon à angle magique (MAS), sont souvent nécessaires pour interpréter les données in situ. Comme pour toutes les caractérisations ex situ, les analyses ne représentent pas toujours fidèlement les processus électrochimiques en raison d'artefacts indésirables provenant du démontage de la cellule et de la séparation des électrodes. Par conséquent, le développement de la RMN in situ a été limité. Dans cette thèse l’étudiant s'attaquera à cette limitation en développant une cellule électrochimique RMN in situ permettant l'acquisition de données ssNMR à haute résolution avec la technique MAS, et permettant également une nouvelle méthode de spectroscopie ssNMR résolue dans l'espace. La combinaison de mesures in situ, de la technique MAS et de la spectroscopie localisée permettra de disposer d'un outil RMN unique pour approfondir les connaissances fondamentales de la chimie des batteries. Le doctorant mettra en évidence les atouts de l’outil développé en étudiant des phénomènes tels que les interfaces et la formation de dendrites dans des batteries Li-ion en fonctionnement.

Top