Développement d’un outil de comparaison multi-critères des systèmes de stockage électrochimiques stationnaires

L’utilisation de systèmes de stockage stationnaire apparaît aujourd’hui incontournable pour accompagner l’évolution du réseau électrique et l’intégration croissante d’énergies renouvelables intermittentes comme le solaire ou l’éolien. Le choix d’une solution de stockage fait appel à de nombreux critères tels que les performances, la durée de vie mais aussi l’impact environnemental, la sécurité, les contraintes règlementaires, sans oublier l’aspect économique.
Le laboratoire dispose d’éléments de comparaison sur ces différents critères, via des études expérimentales et un retour d’expérience sur des systèmes existants. En outre, un premier outil logiciel a été développé pour l’évaluation de l’impact environnemental par ACV (analyse du cycle de vie). L’objectif de ce travail de thèse est d’intégrer ces différentes composantes dans un outil de comparaison plus large avec une approche multi-critères, en ciblant des cas d’étude précis et un nombre limité de technologies de stockage ayant atteint une maturité suffisante pour que les données disponibles soient fiables.

Estimation de l'état de santé et prédiction de la durée de vie restante de batterie lithium-ion par Physics-Informed Deep Learning

Contexte :
Les batteries lithium-ion et sodium-ion de génération futures sont essentielles pour la transition énergétique et l'électrification des transports. Garantir en premier lieu la longévité, les performances mais aussi la sécurité des batteries nécessite une compréhension approfondie des mécanismes de dégradation à différentes échelles.
Objectif de Recherche :
Développer des méthodologies innovantes de diagnostic et de pronostic des batteries en exploitant la fusion de données multi-capteurs et des approches de type Physics-Informed Machine Learning (PIML), combinant des modèles théoriques physiques de batteries avec des algorithmes d'apprentissage profond.
Approche Scientifique :

Établir les corrélations entre les mesures multi-physiques et les mécanismes de dégradation des batteries
Explorer des approches hybrides PIML pour la fusion de données multi-physiques
Développer des architectures d'apprentissage intégrant les contraintes physiques tout en traitant des données hétérogènes
Étendre les méthodologies aux technologies émergentes de batteries sodium-ion

Méthodologie :
La recherche utilisera une base de données de cellules multi-instrumentées (capteurs acoustiques, électriques, thermiques, mécaniques, optiques) , analysant les signatures et modalités de chaque de mesures et développant des algorithmes PIML innovants qui optimisent la fusion de données multi-capteurs.

Résultats Attendus :
La thèse vise à fournir des recommandations précieuses pour l'instrumentation des systèmes de batteries, à développer des algorithmes de diagnostic et pronostic de trajectoires de vieillissement avancés et à contribuer significativement à l'amélioration de la fiabilité et de la durabilité des systèmes de stockage électrochimique, avec des impacts potentiels académiques et industriels.

Influence de la synthèse sur la modélisation des mécanismes de stockage du sodium dans le carbone dur

Les batteries sodium-ion (Na-ion) suscitent un intérêt considérable en tant qu'alternative crédible aux batteries lithium-ion largement utilisées aujourd'hui. L'abondance du sodium, ainsi que l'utilisation potentielle de matériaux d'électrode sans éléments critiques dans leur composition, ont conduit à l'intensification de la recherche sur les batteries Na-ion. Le carbone dur (HC) est identifié comme l'électrode négative la plus appropriée pour cette technologie. Il n’existe toutefois pas de consensus concernant les mécanismes de stockage du sodium dans le HC, parce que les multiples précurseurs et méthodes de synthèse conduisent à des HC singulièrement différents qui ne fonctionnent évidemment pas de la même façon. Une grande base de données fournit des relations entre les paramètres de synthèse (précurseur, lavage, prétraitement, pyrolyse, broyage) et les propriétés du HC (porosité, structure, morphologie, chimie de surface, défauts), mais elle n’explique pas ces relations. Par conséquent, l'approche envisagée dans cette thèse est une modélisation multiphysique des performances du HC permettant de comprendre l'influence du précurseur et de la méthode de synthèse, en exploitant la grande base de données de caractérisation existante.

Caractérisation multi-physique pour l’amélioration des performances des supercondensateurs hybrides au potassium

Le sujet de thèse porte sur l'optimisation des supercondensateurs hybrides au potassium (KIC), qui combinent les propriétés des supercondensateurs (puissance, cyclabilité) et des batteries (énergie). Ce système, développé au CEA, représente une technologie prometteuse, bas coûts et sans matériaux critiques/stratégiques. Cependant, l’optimisation des performances nécessite encore de lever différents verrous observés lors de travaux précédents, notamment sur l’intercalation du potassium dans le graphite et les phénomènes d’échauffement de cellules en fonctionnement. Afin d'explorer en profondeur les mécanismes de fonctionnement du système KIC, une partie essentielle du projet de thèse comprendra des expériences menées à l'ESRF (European Synchrotron Radiation Facility), où des techniques de diffraction et d'imagerie avancées seront utilisées pour analyser la structure des matériaux et leur comportement en conditions réelles de fonctionnement. Le traitement des données recueillies sera également crucial afin d'établir des corrélations entres les propriétés physico-chimiques des matériaux et les performances globales du système. Cette thèse contribuera à la compréhension fondamentale des mécanismes multi-physiques en jeu dans les KIC pour développer des stratégies de conception innovantes et ainsi améliorer leur capacité, leur efficacité énergétique et leur durée de vie.

Expérimentation haut débit appliquée aux matériaux pour batteries

Utilisée depuis de nombreuses années dans le domaine de la pharmacie, l’expérimentation ou criblage haut débit (high throughput screening) apparait comme une méthode efficace pour conduire à la découverte accélérée de matériaux et comme un nouvel outil permettant d’élucider les relations composition-structure-propriétés fonctionnelles. Cette méthode est basée sur la synthèse combinatoire rapide d’un grand nombre d’échantillons de compositions différentes, combinée des caractérisations physico-chimiques rapides et automatisées par différentes techniques. Elle est utilement complétée par un traitement de données adapté.
Une méthodologie de ce type adaptée aux matériaux pour batteries lithium a été mise en place récemment au CEA Tech. Elle est basée d’une part sur la synthèse combinatoire de matériaux synthétisés par co-pulvérisation cathodique magnétron sous forme de couches minces, et d’autre part sur la réalisation de cartographies d’épaisseur (profilométrie), de composition élémentaire (EDS, LIBS), de structure (µ-DRX, Raman) et de propriétés électr(ochim)iques de bibliothèques de matériaux (~100) déposés sur un wafer. Une première phase a permis de mettre en place les principaux outils au travers de l’étude d’électrolytes solides amorphes de type Li(Si,P)ON pour batteries tout solide.
L’objectif de cette thèse est de poursuivre le développement de la méthode de manière à permettre l’étude de nouvelles classes de matériaux pour batteries : électrolytes cristallins ou vitrocéramiques pour Li ou Na, matériaux d’électrode oxydes, sulfures ou alliages métalliques. Il s’agira en particulier de tirer parti de nos nouveaux équipements de cartographie des propriétés physico-chimiques (µ-diffraction X, Laser-Induced Breakdown Spectroscopy) et d’établir une méthodologie de fabrication et de caractérisation de bibliothèques d’accumulateurs tout-solide en couches minces. Une partie de ce travail pourra également concerner le traitement des données et la programmation des moyens de caractérisation.
Ce travail sera l’objet de collaborations avec des chercheurs de l’ICMCB et du CENBG

Développement d’argyrodites à fort taux d’halogènes pour batterie tout-solide tout-sulfure

Les batteries tout-solides connaissent un regain d’intérêt depuis quelques années puisque cette technologie permet d’envisager une augmentation des densités d’énergie due à l’utilisation du lithium comme électrode négative mais également une augmentation de la sécurité des batteries par rapport à la technologie Li-ion. L’utilisation de sulfures comme matériaux d’électrode positive couplés à l’argyrodite comme électrolyte solide sont des systèmes intéressants à développer. En effet, les argyrodites atteignent des conductivités ioniques proches de celles des électrolytes liquides. De plus, la fenêtre de stabilité en cyclage des sulfures est proche de celle de l’argyrodite faisant de la technologie tout-sulfure une technologie prometteuse pour le développement des batteries tout-solides.
Dans une volonté d’améliorer les propriétés de conduction des argyrodites, des études récentes ont montré que la conductivité ionique dépend fortement de leur structure locale. La RMN du solide apparait ainsi comme une technique prometteuse afin de sonder les environnements locaux des noyaux cités et notamment de quantifier la variété d’environnements locaux différents favorisant une hausse de la conductivité ionique. Des compositions enrichies en halogénures semblant favoriser la conduction ionique, la synthèse de matériaux correspondant et leur structure seront étudiées.
La thèse s’articulera ainsi autour de deux axes principaux, l’étude de batteries tout-sulfures et la caractérisation fine d'argyrodite avec des structures locales contrôlées. En effet, des argyrodites riches en halogène seront développées et étudiées afin de déterminer l'influence des différents environnements locaux sur les propriétés de conduction.

Accumulateurs aux lithium tout solide à base d’électrolyte pyrochlore

Face à l'augmentation de la demande énergétique, il est urgent de concevoir des systèmes de stockage plus performants, qu’ils soient stationnaires ou embarqués. Parmi ceux-ci, les batteries lithium-ion se démarquent comme les plus avancées, capables d’être fabriquées à partir d’électrolytes liquides ou solides. Les batteries tout-solide ont un bel avenir devant elles grâce à leurs électrolytes non inflammables et à leur capacité d’utiliser du lithium métallique pour augmenter la densité d’énergie. Bien que la recherche sur ces batteries donne lieu à une forte compétition internationale, leur commercialisation n’est pas encore une réalité. En effet, deux obstacles importants entravent leur développement : la faible conductivité ionique intrinsèque des solides et la difficulté d’obtenir de bonnes interfaces solides/solides au sein des électrodes composites et du système complet.

Cette thèse vise à développer des batteries tout-solide basée sur une nouvelle classe de matériaux superioniques de type pyrochlore oxyfluorure, qui sont stables à l’air et ont une conductivité ionique supérieure à celle de tous les électrolytes solides oxydes existants. Les propriétés électrochimiques des batteries tout solide seront soigneusement examinées en combinant des techniques in situ et operando (DRX, Raman, analyse par faisceau d'ions/synchrotron, RMN du solide, Tomographie à rayons X…).

Mots clés :
Électrolyte solide, Batterie tout solide, Résonance magnétique nucléaire, Électrochimie, pyrochlore Oxyfluorure, in situ/operando, Spectroscopie, Synchrotron

Développement d'électrodes négatives en couches minces pour accumulateurs tout-solides "Li-free"

L'objectif de cette thèse est de développer des électrodes négatives dites ‘Li-free’ pour de nouvelles générations de batteries au lithium tout solides à forte densité d’énergie. La fonction de ce type d’électrode est d’apporter un gain significatif en densité d’énergie au niveau de l’accumulateur, de faciliter sa fabrication en s’affranchissant de la manipulation du lithium métal, et avant tout, à permettre la formation d’un film homogène de lithium, exempt de dendrites lors la charge de l’accumulateur.
Ces électrodes seront basées sur la fonctionnalisation d’un collecteur métallique par des matériaux en couches minces, comportant au moins un matériau lithiophile (typiquement un composé alliable avec le lithium) et un conducteur ionique inorganique. La préparation de ces électrodes fera appel à des procédés de dépôt physique sous vide tels que la pulvérisation cathodique ou l’évaporation thermique. Il s’agira donc d’étudier l’influence de la composition et de la structuration de la couche lithiophile sur le mécanisme de nucléation et de croissance du film de lithium, et sur l’évolution de l’électrode au cours des cycles de charge/décharge. Le rôle des interactions chimiques/mécaniques avec la couche conductrice ionique sera également scruté.
Cette thèse qui s’inscrit dans un projet collaboratif national CEA/CNRS s’effectuera sur le site du CEA Tech à Pessac qui dispose d’un parc complet d’équipements de dépôt sous vide et de caractérisation des couches minces, en étroite collaboration avec l’ICMCB de Bordeaux. Elle bénéficiera des nombreux moyens de caractérisation (microscopie optique confocale, MEB/cryo FIB, ToF-SIMS, RMN, µ-DRX, AFM,...) disponibles au sein des différents laboratoires partenaires du projet.

Nouveaux alliages et composites à base silicium pour batteries tout-solide : de la synthèse combinatoire par pulvérisation cathodique magnétron vers la mécanosynthèse

Les batteries au lithium tout-solide utilisant des électrolytes à base de sulfures sont parmi les plus étudiées actuellement en vue d’une amélioration de la densité d’énergie, de la sécurité et de la charge rapide. Si initialement le lithium métal était le choix privilégié pour l’anode, les difficultés rencontrées lors de sa mise en œuvre et les performances obtenues laissent penser que des alternatives doivent être recherchées. Le silicium apporte un compromis intéressant en termes de densité d’énergie et de durée de vie. Cependant, il est nécessaire de rechercher des matériaux d’anode développés pour les applications tout-solide. Dans ce but, nous proposons de collaborer avec CEA Tech Nouvelle-Aquitaine, qui a mis en place une méthodologie de synthèse combinatoire par pulvérisation cathodique magnétron, afin d’accélérer l’identification de nouvelles compositions de matériaux à base de silicium. Pour ce faire des bibliothèques de matériaux à gradient de compositions en couches minces seront préparés au CEA Tech Nouvelle-Aquitaine pour ensuite être étudiées au CEA Grenoble. Les compositions les plus prometteuses seront alors préparées par mécanosynthèse et caractérisées au CEA Grenoble. Un travail important sur les procédés de broyage sera réalisé afin d’optimiser la taille des particules et l’homogénéité ainsi que la structure et la microstructure. Il faudra également s’intéresser à l’intégration en cellule tout-solide en s’appuyant sur le savoir-faire du laboratoire.

Décrypter les rôles de la chimie de surface et de la structuration multi-échelle dans le contrôle des performances de stockage des supercondensateurs à base de graphène

L'objectif de ce projet de recherche fondamentale est d’élucider les corrélations existantes, entre les propriétés des matériaux à base de graphène et leurs performances de stockage électrochimique, en dispositif supercondensateur. L’importance de la chimie de surface et celle de la structure multi-échelle de ces matériaux seront spécifiquement étudiées, car la plupart des propriétés physico-chimiques de ces matériaux découlent de ces 2 paramètres. Aussi, des matériaux spécifiquement conçus pour présenter des chimies de surface différentes (dopage N, différents degrés de réduction…) et différentes structurations seront synthétisés et caractérisés, en utilisant des méthodes classiques à avancées (CV-SANS, in-situ SANS…), spécifiquement adaptées à l’étude de ces propriétés et de leur évolution en cours de cyclage électrochimique. Les résultats obtenus permettront de fournir une compréhension multi-échelle du mécanisme de stockage et aideront à concevoir des matériaux dotés de propriétés de stockage optimisées.

Top