Transmission de puissance sans fil ultra basse fréquence pour l’alimentation de capteurs

Les technologies de transmission de puissance sans fil (TPSF) sont en pleine expansion, notamment pour la recharge sans fil des appareils électroniques de tous les jours mais aussi pour l’alimentation de nœuds de capteur communicants sans fil. Toutefois, leurs portées de transmission restent encore limitées et la haute fréquence de fonctionnement généralement utilisée interdit toute transmission d’énergie en présence ou à travers les milieux conducteurs (parois métalliques ou eau de mer). Cet aspect limite leur adoption en milieux complexes (industriels, bio-médicaux, ...). La technologie ultra basse-fréquence que notre laboratoire étudie est basée sur un système électromécanique récepteur comprenant une bobine et un aimant mis en mouvement par un champ magnétique émis à distance. Le but de la thèse consistera à proposer et développer des nouveaux concepts ultra basse-fréquence pour augmenter la portée de transmission tout en conservant des densités de puissance suffisantes pour l’alimentation de systèmes de capteurs. La thèse consistera donc à étudier, concevoir, optimiser et tester les performances de nouvelles topologies (forme du champ émetteur, géométries et matériaux du récepteur…). Le candidat sera amené à développer des modèles analytiques et numériques pour identifier les paramètres d’influence du système et comparer ses performances à la littérature (portées, densités de puissance, sensibilité à l’orientation). De plus, le candidat pourra proposer, développer et tester des électroniques de conversion d’énergie innovantes adaptées, côté émetteur et/ou récepteur pour étudier leurs impacts sur les performances du système. Une optimisation conjointe du système électromécanique et de son électronique associée pourra mener à la réalisation d’un système complet de transmission de puissance sans fil performant. Un profil pluridisciplinaire orienté physique et mécatronique est recherché pour cette thèse. En plus de solides bases théoriques, le doctorant devra posséder des capacités à travailler en équipe et une aptitude à l’expérimentation. Le doctorant sera intégré au Département Systèmes du CEA-Leti, au sein d’une équipe de chercheurs possédant de fortes compétences sur le développement et l’optimisation de systèmes électroniques et mécatroniques alliant des solutions innovantes pour la récupération d’énergie, la transmission de puissance sans fil, l’électronique basse consommation et l’intégration de capteurs pour le développement de systèmes autonomes.

Systèmes de maintenance prédictive basés sur l’acoustique et les ultrasons pour les équipements industriels

Les convertisseurs de puissance sont essentiels dans de nombreuses applications telles que l’industrie, les systèmes photovoltaïques, les véhicules électriques et les centres de données. Leur maintenance conventionnelle est souvent basée sur des calendriers fixes, entraînant un remplacement prématuré des composants et une quantité importante de déchets électroniques.
Ce projet de doctorat vise à développer une nouvelle approche de surveillance non invasive et à faible coût, basée sur les ultrasons, afin d’évaluer l’état de santé et la durée de vie résiduelle (RUL) des convertisseurs de puissance déployés dans divers secteurs industriels.

La recherche se concentrera sur l’identification et la caractérisation des signatures ultrasonores émises par des composants électroniques vieillissants, ainsi que sur le développement de réseaux de neurones guidés par la physique (PINNs) pour modéliser leurs mécanismes de dégradation. Le projet combinera des études expérimentales avec des techniques avancées de traitement du signal et d’intelligence artificielle (compressed sensing), dans le but de détecter les premiers signes de défaillance et de permettre des stratégies de maintenance prédictive exécutées localement (edge deployment).

Les travaux de recherche seront menés dans le cadre d’un réseau doctoral Marie Sklodowska-Curie Actions (MSCA), offrant une formation internationale, une collaboration interdisciplinaire et des périodes de mobilité auprès de partenaires académiques et industriels de premier plan en Europe (Italie et Pays-Bas pour cette offre de doctorat).

PCB instrumenté pour la maintenance prédictive

La fabrication des équipements électroniques et plus particulièrement celui des PCB (Printed Circuit Board) occupent une part importante de l’impact environnemental du numérique qui doit être minimisé. Dans une logique d’économie circulaire, le développement d’outils de suivi et de diagnostic de l’état de santé de ces cartes pourrait alimenter le passeport numérique du produit et faciliter leur réutilisation dans une seconde vie et. Dans une logique de maintenance préventive et prescriptive, ces outils pourraient augmenter leur durée de vie en évitant un remplacement périodique inutile dans les applications pour lesquelles la fiabilité est une priorité ainsi que d’adapter leur usage dans le but d’éviter leur détérioration prématurée.
Cette thèse propose d’explorer l’instrumentation innovante de PCB à l’aide de capteurs ‘virtuels’, estimateurs avancés alimentés par des modalités de mesure (de type piézoélectriques, ultrasonores, etc.) qui pourraient être intégrées au sein même des PCB. L’objectif est de développer des méthodes de suivi de l’état de santé des cartes, tant sur le plan mécanique (fatigue, contraintes, déformations) qu’électronique.
Une première étape consistera à réaliser un état de l’art et des simulations pour sélectionner les capteurs pertinents, définir les grandeurs à mesurer et optimiser leur implantation. La modélisation multi-physique et la réduction de modèles permettront ensuite de relier les données à des indicateurs d’intégrité du PCB caractérisant son état de santé. La démarche combinera modélisations numériques, validations expérimentales et méthodes d’optimisation multiparamétriques.

Magnétomètres à pompage optique à 3He

Le laboratoire, spécialisé dans la mesure magnétique de haute résolution et de haute précision, développe et fournit depuis plusieurs décennies différentes générations de magnétomètres à pompage optique de l'hélium-4. Ces instruments sont notamment utilisés comme référence sur les satellites de la mission ESA Swarm lancés fin 2013 et ceux de la mission NanoMagSat qui devraient les rejoindre à partir de fin 2027.

En vue de diversifier ses activités et de viser des applications de type capteur abandonné pour lesquelles les contraintes de consommation peuvent être très importantes, le laboratoire souhaite développer une technologie de magnétomètre utilisant cette fois l'atome d'hélium-3 comme élément sensible. La durée de vie de l'état de l'atome d'hélium-3 utilisé pour mesurer le champ magnétique est effectivement beaucoup plus longue que celle de l'état équivalent de l'hélium-4. Cela permet de réduire significativement le besoin de pompage et d'envisager un gain important en termes de consommation énergétique du système. Notre objectif est de démontrer le fonctionnement de cette architecture de magnétomètre afin de réaliser un instrument combinant à la fois un très haut niveau de performances métrologiques et de frugalité énergétique pour ces applications très spécifiques.

L'objet de ce travail de thèse sera donc de concevoir, mettre en œuvre et évaluer une architecture de magnétomètre hélium-3, avec des défis électroniques spécifiques à aborder pour permette d'atteindre cet objectif (chaîne optique à 1083 nm, système de pilotage électronique).

Top