Les années récentes ont vu d'énormes progrès dans le développement des technologies quantiques capables de mesurer et de contrôler des degrés de liberté quantiques dans des dispositif à l'état solide solide. Dans ce contexte, le CEA de Grenoble a été un pionnier dans la démonstration d'une architecture hybride CMOS dans laquelle un seul photon piégé dans un résonateur supraconducteur est fortement couplé au spin d'un trou unique confiné dans une double boîte quantique [1,2]. Cette expérience ouvre des perspectives importantes pour le développement de nouvelles architectures d'électrodynamique quantique avec des circuit hybrides où les photons peuvent sonder, intriquer et contrôler l'état quantique de spins éloignés.
Le potentiel de ces plateformes pour les technologies quantiques reste à évaluer d'un point de vue théorique, en particulier pour les applications au calcul et à la simulation quantique. Contrairement aux qubits purement supraconducteurs, le mécanisme de couplage spin-photon fort repose sur la présence d'une interaction spin-orbite importante dans la bande de valence du silicium.
Cette thèse de doctorat renforcera l'activité théorique du CEA sur ce sujet et étudiera comment optimiser les protocoles de lecture et de manipulation pour des architectures basées sur le silicium et le germanium. Un effort particulier sera consacré à la modélisation quantitative du couplage spin-photon et à l'étude des mécanismes limitants les performances de ces dispositifs (bruit quantique). Nous examinerons également les effets de l'interaction entre plusieurs spins couplés par le biais d'un ou plusieurs résonateurs.
[1] Strong coupling between a photon and a hole spin in silicon, Cécile X. Yu, Simon Zihlmann, José C. Abadillo-Uriel, Vincent P. Michal, Nils Rambal, Heimanu Niebojewski, Thomas Bedecarrats, Maud Vinet, Étienne Dumur, Michele Filippone, Benoit Bertrand, Silvano De Franceschi, Yann-Michel Niquet and Romain Maurand, Nature Nanotechnology 18, 741 (2023)
[2] Tunable hole spin-photon interaction based on g-matrix modulation, V. P. Michal, J. C. Abadillo-Uriel, S. Zihlmann, R. Maurand, Y.-M. Niquet, and M. Filippone, Phys. Rev. B 107, L041303 (2023)