Avec ~5 000 exoplanètes connues (http://exoplanet.eu), il est clair que la diversité observée des exoplanètes est liée à leur histoire. Dans ce contexte, la science des exoplanètes est confrontée à deux questions clés. La première est de savoir comment l'évolution a pu modifier la composition globale des planètes. Cette question est d'actualité, car diverses installations (JWST, date de lancement : décembre 2021 ; ARIEL, lancement en 2028 ; E-ELT : première lumière en 2027) étudieront avec un détail sans précédent les atmosphères des exoplanètes par spectroscopie. La deuxième question est de savoir comment l'évolution a pu façonner la démographie des exoplanètes. Notamment, notre compréhension de la démographie a radicalement changé au cours de la dernière décennie, et continuera à évoluer grâce aux nouvelles découvertes des missions spatiales photométriques (par exemple TESS, PLATO) et aux relevés de vitesse radiale des principaux télescopes au sol.
L'assimilation de ces connaissances empiriques nécessite des modèles motivés physiquement qui relient les propriétés des planètes et de leurs étoiles hôtes tout au long de leur histoire commune. A cette fin, notre projet va construire un traitement sophistiqué du transfert radiatif (RT) pour les exoplanètes proches avec des atmosphères dominées par l'hydrogène ou non. Les modules de transfert radiatif seront mis en œuvre dans les modèles photochimiques et hydrodynamiques de l'équipe afin de mieux comprendre l'évolution temporelle des exoplanètes. Les prédictions aideront à interpréter les contraintes que le JWST établira sur la composition de quelques petites exoplanètes pour lesquelles du temps d'observation a été accordé dans le cadre des programmes GTO+GO.