La turbulence et le transport associé dégradent le confinement des plasmas de tokamaks, diminuant les performances attendues en terme de gain énergétique. Expérimentalement, plusieurs régimes de confinement amélioré sont observés, notamment ceux où le transport turbulent est fortement réduit à la périphérie du plasma. Ces barrières de transport externes conduisent à de forts gradients de densité et/ou de température qui maximisent le contenu énergétique du plasma confiné. Ces bifurcations spontanées résultent de l'auto-organisation de la turbulence soumise au forçage de différentes sources, de particules et de chaleur. Leur mécanisme est mal compris, du fait notamment de la complexité topologique de cette région externe et de la richesse des probables processus en jeu. Ces régimes représentent une chance majeure pour atteindre les meilleures performances dans les plasmas d'ITER. Il est donc crucial de gagner en compréhension pour pouvoir prédire leurs seuils de transition et si possible les contrôler.
La thèse proposée s'inscrit dans ce cadre. Elle repose sur la modélisation numérique à l'état de l'art des plasmas de fusion, la description gyrocinétique à cinq dimensions dans l'espace des phases. Les développements récents permettent de traiter séparément les transports de matière et de chaleur dans cette région périphérique. Reste à implémenter une source de particules neutres qui, par ionisation, constituera le forçage en densité du plasma. On sait d'ores et déjà, grâce notamment à des modèles réduits, que cette source dynamique joue un rôle crucial dans les processus d'auto-organisation. L'objectif du travail de thèse est de coupler un modèle fluide de neutres aux électrons et ions décrits cinétiquement, et d'étudier leur impact sur le transport turbulent et son auto-organisation grâce à des simulations HPC (high performance computing) avec le code GYSELA.