Dans le contexte de la recherche de procédés moins polluants et plus économes en énergie que les procédés actuels, il est intéressant de produire des molécules à fort enjeu telles que par exemple C2H4 en développant des voies de synthèses alternatives au vapocraquage, majoritairement employé, mais coûteux en énergie et à base de ressources fossiles. Les procédés tels que la photocatalyse, qui repose sur l’utilisation de l’énergie lumineuse, paraissent alors séduisants pour générer ces molécules d’intérêt. Dans ce cadre, nous avons déjà montré que l’utilisation de photocatalyseurs à base de TiO2 décoré par des particules de cuivre permettait la production d’éthylène à partir d’une solution aqueuse d’acide propionique, le tout avec une sélectivité (C2H4/autres produits carbonés) allant jusqu’à 85%.
Cependant, les cinétiques de photocatalyse peuvent être lentes et il peut être long d’identifier les meilleurs catalyseurs ou les meilleurs couples « catalyseurs/réactifs » pour une réaction donnée. Ainsi, dans le but de déterminer si la radiolyse, qui repose sur l’utilisation du rayonnement pour ioniser la matière, peut être une méthode efficace de criblage de catalyseurs, des premières expériences ont déjà été réalisées sur les couples catalyseurs (TiO2 ou CuTiO2)/réactifs (acide propionique plus ou moins concentré), préalablement étudiés en photocatalyse. Les premiers résultats obtenus par radiolyse sont encourageants. Dans ces expériences, seule la production de dihydrogène a été mesurée. Une différence significative a été observée dans cette production selon les systèmes : elle est importante lors de la radiolyse d’acide propionique avec des nanoparticules de TiO2, et sensiblement plus faible en présence des nanoparticules CuTiO2, ce qui suggère un chemin réactionnel différent dans ce dernier cas, en accord avec les observations réalisées lors des expériences de photocatalyse.
Le but de ce travail de thèse consistera à approfondir ces premiers résultats en synthétisant des nanoparticules (catalyseurs), en préparant des mélanges réactifs/catalyseurs puis en les irradiant et en mesurant les différents gaz produits par micro-chromatographie en phase gazeuse, en se concentrant d’abord sur l’éthylène. Un soin particulier sera accordé à la détermination d’espèces formées, notamment transitoires, afin de proposer in fine des mécanismes de réaction rendant compte des différences observées pour les différents couples réactifs/catalyseurs. Des comparaisons avec des résultats obtenus par photocatalyse seront également effectuées.