La thèse s’inscrit dans le cadre de l’expérience GBAR au CERN, qui vise à mesurer l’accélération gravitationnelle terrestre pour des atomes d’antihydrogène ultra-froids. L’étape-clé pour obtenir ces anti-atomes ultra-froids est de produire d’abord des ions positifs d’antihydrogène (deux positons liés à un antiproton, l’équivalent de H–), en utilisant du positronium (état lié électron-positon).
Le sujet de thèse est dédié à l’étude de la réaction d’échange de charge entre un atome d’antihydrogène et un atome de positronium, produisant un ion positif d’antihydrogène. Il s’agit d’une part de mesurer les sections efficaces de cette réaction, en passant par la réaction conjuguée de charge produisant H–, et d’autre part de démontrer et optimiser la production de cet anti-ion. La réalisation de chacun de ces deux objectifs est une avancée majeure : une mesure expérimentale des sections efficaces permettra de tester différents modèles théoriques de collisions atomiques à basse énergie qui sont actuellement en désaccord ; quant à l’ion antihydrogène, nécessaire à GBAR, il ouvrira de nouvelles voies pour les futures études sur l’antimatière. Enfin, un volet de la thèse explorera l’application de ces sections efficaces à l’annihilation des positrons dans le milieu interstellaire.
La thèse se déroulera principalement au CERN. De 2023 à 2025, GBAR recevra du faisceau d’antiprotons et de H– : cette période sera donc consacrée à la préparation et la réalisation des mesures expérimentales. L’année 2026 sera en majorité dédiée à la finalisation du traitement des données et à la rédaction de la thèse.