L'IA générative a le potentiel de transformer diverses industries. Cependant, les modèles actuels de pointe comme les transformers rencontrent des défis significatifs en termes d'efficacité computationnelle et de mémoire, notamment lorsqu'ils sont déployés sur des matériels à ressources limitées. Cette recherche de doctorat vise à résoudre ces problèmes en optimisant les réseaux Mamba pour des applications matérielles. Les réseaux Mamba offrent une alternative prometteuse en réduisant la complexité quadratique des mécanismes d'attention par des choix architecturaux innovants. En utilisant des techniques comme les motifs d'attention éparses et le partage efficace des paramètres, les réseaux Mamba peuvent générer des données de haute qualité avec des besoins en ressources beaucoup plus faibles. La recherche se concentrera sur la mise en œuvre d'optimisations matérielles pour améliorer l'efficacité des réseaux Mamba, les rendant adaptés aux applications en temps réel et aux dispositifs embarqués. Cela inclut l'optimisation des temps de formation et d'inférence, ainsi que l'exploration des accélérations matérielles potentielles. L'objectif est d'avancer le déploiement pratique de l'IA générative dans des domaines à ressources limitées, contribuant ainsi à son adoption plus large et à son impact.