Une des meilleures thèses qu'on peut faire aujourd'hui : la physique du boson de Higgs par le biais d'une désintégration rare non encore observée, un processus prévu par le modèle standard crucial pour progresser dans sa compréhension, avec une partie détecteur liée à la fois au sujet de physique et à l'amélioration du détecteur CMS pour la phase à haute luminosité du LHC.
Dans la recherche de compréhension de notre univers, le modèle standard de la physique des particules apparaît comme une approximation à basse énergie d'une théorie plus complète. La découverte du boson de Higgs a apporté une pièce essentielle au puzzle. Toutefois, plusieurs questions restent ouvertes (naturalité, nombre de générations de leptons, asymétrie matière-antimatière dans l'univers, etc.). Une caractérisation précise du boson de Higgs à travers tous ses canaux de désintégration doit permettre d'améliorer notre compréhension du problème.
Cette thèse propose une recherche de la désintégration du boson de Higgs en un boson Z et un photon (Zgamma). Aussi rare que la désintégration en deux photons, elle est plus difficile à observer en raison du faible rapport d'embranchement du boson Z en leptons chargés (électrons et muons). Les désintégrations du boson Z en neutrinos et d'autres états finals pourront probablement être exploitées avec une certaine chance de succès.
La désintégration Zgamma n'a pas encore été observée - seules des limites sur sa probabilité ont été placées - mais elle pourrait être mise en évidence en utilisant l'ensemble des données du Run2 du LHC (2015-2018) ainsi que du Run3, qui vient de démarrer et permettra de doubler la quantité de données avant 2025.
La désintégration Zgamma est liée à d'autres désintégrations du boson de Higgs, qui peuvent aider à la contraindre : la désintégration directe en deux muons plus un photon additionnel irradié dans l'état final, celle en deux bosons Z, celles de type Dalitz en électrons et muons.
Les productions de bosons Z (Drell-Yan) et de paires de bosons vecteurs comme ZZ, ZW et WW, prévues dans le modèle standard, viennent masquer l'état final Zgamma et doivent être prises en compte dans l'analyse : la recherche pour la désintégration Zgamma implique de maîtriser différents processus fondamentaux, ainsi que les modes de production du boson de Higgs.
La thèse inclut aussi une partie expérimentale dont l'objectif est d'optimiser la résolution en temps du calorimètre électromagnétique de CMS (ECAL). Bien que conçu pour des mesures de précision en énergie, le ECAL présente aussi une excellente résolution sur le temps d'arrivée des photons (environ 150 ps en collisions, bien que 70 ps aient été atteintes en test faisceau). Dans un environnement peuplé de photons provenant de collisions parasites (empilement, ou pileup), la connaissance du temps d'arrivée du photon dans l'état final peut contribuer à en contraindre la provenance au vertex de désintégration du boson de Higgs, celui dont sont issus les leptons de désintégration du boson Z.
Cette faculté à exploiter l'information en temps du calorimètre sera une clef pour la phase à haute luminosité du LHC (2029-) quand l'électronique du ECAL sera remplacée pour offrir une résolution en temps encore meilleure (30 ps pour les photons et électrons de haute énergie) et la luminosité du LHC -et le nombre d'évènements superposés - et donc de photons dans l'état final - sera un facteur 5 supérieur à celui du Run 2.
La thèse propose aussi de participer aux shifts de prise de données de CMS et de CMS/ECAL au CERN ainsi qu'aux tests en laboratoire prévus pour valider la nouvelle électronique du ECAL qui vient d'être développée.