



Les architectures neuromorphiques actuelles, bien que plus efficaces grâce au in-memory computing, restent limitées par la densité extrême en poids et interconnexions, rendant leur implémentation matérielle complexe et coûteuse. Les Liquid Neural Networks (LNN), introduits par le MIT au niveau algorithmique, offrent une rupture : des neurones dynamiques à temps continu capables d’ajuster leurs constantes internes selon le signal reçu, réduisant drastiquement le nombre de paramètres nécessaires.
L’objectif de la thèse est de transposer les algorithmes des LNN au niveau circuit, en développant des cellules analogiques très faible consommation à base d’oscillateurs, réalisant le calcul neuronal dans le domaine temporel et reproduisant la dynamique liquide, puis en les interconnectant dans une architecture stable et récurrente afin de viser des applications d’IA générative. Un démonstrateur silicium sera conçu et validé, ouvrant la voie à une nouvelle génération de systèmes neuromorphiques liquides pour l’Edge AI.

