La spectroscopie de photoémission est l'un des moyens les plus directs d'accéder à la structure électronique des matériaux. Poursuivant l’ambition de contrôler la matière avec de la lumière et de créer de nouvelles fonctionnalités à la demande, l'avènement des sources laser à électrons libres ouvre de nouvelles perspectives passionnantes pour la spectroscopie des matériaux résolue dans le temps. Afin de transformer ces grands espoirs en réalité, une compréhension plus approfondie du changement photo-induit des propriétés des matériaux hors équilibre est la première priorité. Le projet de thèse entend relever ce défi en révélant les véritables signatures de la corrélation électronique dans les spectres de photoémission résolue dans le temps et en permettant l'utilisation complète de leurs informations physiques. Les pics principaux des spectres correspondent généralement à la structure de bandes des quasiparticules. Les répliques de ces pics, appelées satellites, sont entièrement dues aux interactions. Ils ne peuvent pas, par définition, être interprétés du point de vue d'une seule particule et, par conséquent, ils apportent des informations complémentaires à celles obtenues à partir de la structure de bandes. Ils reflètent la force de la corrélation électronique dans un matériau et présentent des échelles de longueur et de temps qui diffèrent de celles de la structure de bandes. Cependant, la partie satellite des spectres est en général beaucoup moins étudiée que les quasiparticules. La photo-excitation des porteurs peut être interprétée comme un processus de photo-dopage qui modifie les propriétés d'écrantage des matériaux. Nous estimons que la photo-excitation peut affecter les satellites encore plus fortement que les quasiparticules : les satellites pourraient être utilisés comme un outil de diagnostic informant sur l'effet de l'excitation laser avec une meilleure sensibilité que les quasiparticules.