La population de neutrons dans un réacteur fluctue en raison du caractère aléatoire de l’émission des neutrons et des différentes sources de vibrations mécaniques qui peuvent impacter les sections efficaces neutroniques. Le réacteur peut alors être vu comme un système associé à une fonction de transfert qui relie une excitation (la vibration ou le caractère aléatoire de l’émission des neutrons par fission) à la population de neutrons. L’étude et la mesure de cette fonction de transfert permettent de remonter à des paramètres neutroniques essentiels liés à la cinétique d’émission des neutrons retardés, ou bien même à la source de vibrations. Or, l’expression théorique de cette fonction de transfert est le plus souvent basée sur la cinétique du réacteur ponctuel qui dans certains cas ne permet pas d’exploiter avec fiabilité les mesures réalisées.
Dans ce travail de thèse, on propose d’étudier différentes extensions du formalisme de la fonction de transfert neutronique au moyen de simulations Monte Carlo. Dans un premier temps, on simulera des fluctuations à l’aide d’un code simplifié en C++ afin de confirmer les hypothèses des équations théoriques du « bruit neutronique » qui peuvent être utilisées pour « mesurer » la fraction effective de neutrons retardés. Dans un second temps, il s’agira d’utiliser des outils plus fidèles à la réalité couplant un transport des neutrons dans la matière "analogue" (c’est à dire au plus proche de la réalité) par méthode Monte Carlo (TRIPOLI-4) à un code simulant l’émission détaillée des neutrons (FIFRELIN) afin d’interpréter des mesures passées. Enfin, un dernier volet de la thèse sera dédié aux applications pratiques que pourraient avoir la mesure de ces fluctuations dans l’exploitation de petits réacteurs.